352 research outputs found

    Scanning tunneling microscopy simulations of poly(3-dodecylthiophene) chains adsorbed on highly oriented pyrolytic graphite

    Get PDF
    We report on a novel scheme to perform efficient simulations of Scanning Tunneling Microscopy (STM) of molecules weakly bonded to surfaces. Calculations are based on a tight binding (TB) technique including self-consistency for the molecule to predict STM imaging and spectroscopy. To palliate the lack of self-consistency in the tunneling current calculation, we performed first principles density-functional calculations to extract the geometrical and electronic properties of the system. In this way, we can include, in the TB scheme, the effects of structural relaxation upon adsorption on the electronic structure of the molecule. This approach is applied to the study of regioregular poly(3-dodecylthiophene) (P3DDT) polymer chains adsorbed on highly oriented pyrolytic graphite (HOPG). Results of spectroscopic calculations are discussed and compared with recently obtained experimental datComment: 15 pages plus 5 figures in a tar fil

    Boron and nitrogen codoping effect on transport properties of carbon nanotubes

    Get PDF
    International audienceThis paper reports a theoretical study of the effect of boron and nitrogen codoping on the transport properties of carbon nanotubes (CNTs) at the mesoscopic scale. A new tight-binding parametrization has been set up, based on density functional theory calculations, that enables a reliable description of the electronic structure of realistic BN-doped CNTs. With this model, we have carried out a deep analysis of the electronic mean free path (MFP) exhibited by these nanostructures. The MFP is highly sensitive to the geometry of the scattering centers. We report that the relative distance between B and N atoms in the network influences drastically the electronic conduction. Moreover, we point out that the scattering induced by small hexagonal BN domains in the carbon network is less important than the BN-pair case

    Contact resistance in graphene-based devices

    Full text link
    We report a systematic study of the contact resistance present at the interface between a metal (Ti) and graphene layers of different, known thickness. By comparing devices fabricated on 11 graphene flakes we demonstrate that the contact resistance is quantitatively the same for single-, bi-, and tri-layer graphene (800±200Ωμm\sim800 \pm 200 \Omega \mu m), and is in all cases independent of gate voltage and temperature. We argue that the observed behavior is due to charge transfer from the metal, causing the Fermi level in the graphene region under the contacts to shift far away from the charge neutrality point

    In-situ Analysis of Laminated Composite Materials by X-ray Micro-Computed Tomography and Digital Volume Correlation

    Get PDF
    The complex mechanical behaviour of composite materials, due to internal heterogeneity and multi-layered composition impose deeper studies. This paper presents an experimental investigation technique to perform volume kinematic measurements in composite materials. The association of X-ray micro-computed tomography acquisitions and Digital Volume Correlation (DVC) technique allows the measurement of displacements and deformations in the whole volume of composite specimen. To elaborate the latter, composite fibres and epoxy resin are associated with metallic particles to create contrast during X-ray acquisition. A specific in situ loading device is presented for three-point bending tests, which enables the visualization of transverse shear effects in composite structures

    Moir\'e patterns on STM images of graphite from surface and subsurface rotated layer

    Full text link
    We have observed with STM moir\'e patterns corresponding to the rotation of one graphene layer on HOPG surface. The moir\'e patterns were characterized by rotation angle and extension in the plane. Additionally, by identifying border domains and defects we can discriminate between moir\'e patterns due to rotation on the surface or subsurface layer. For a better understanding of moir\'e patterns formation we have studied by first principles an array of three graphene layers where the top or the middle layer appears rotated around the stacking axis. We compare the experimental and theoretical results and we show the strong influence of rotations both in surface and subsurface layers for moir\'e patterns formation in corresponding STM images.Comment: 5 pages, 6 figure

    Warren McCulloch and the British cyberneticians

    Get PDF
    Warren McCulloch was a significant influence on a number of British cyberneticians, as some British pioneers in this area were on him. He interacted regularly with most of the main figures on the British cybernetics scene, forming close friendships and collaborations with several, as well as mentoring others. Many of these interactions stemmed from a 1949 visit to London during which he gave the opening talk at the inaugural meeting of the Ratio Club, a gathering of brilliant, mainly young, British scientists working in areas related to cybernetics. This paper traces some of these relationships and interaction

    Quantum Hall effect and Landau level crossing of Dirac fermions in trilayer graphene

    Get PDF
    We investigate electronic transport in high mobility (\textgreater 100,000 cm2^2/V\cdots) trilayer graphene devices on hexagonal boron nitride, which enables the observation of Shubnikov-de Haas oscillations and an unconventional quantum Hall effect. The massless and massive characters of the TLG subbands lead to a set of Landau level crossings, whose magnetic field and filling factor coordinates enable the direct determination of the Slonczewski-Weiss-McClure (SWMcC) parameters used to describe the peculiar electronic structure of trilayer graphene. Moreover, at high magnetic fields, the degenerate crossing points split into manifolds indicating the existence of broken-symmetry quantum Hall states.Comment: Supplementary Information at http://jarilloherrero.mit.edu/wp-content/uploads/2011/04/Supplementary_Taychatanapat.pd

    Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes

    Get PDF
    As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics. © 2012 American Chemical Society

    Localization of Dirac electrons by Moire patterns in graphene bilayers

    Full text link
    We study the electronic structure of two Dirac electron gazes coupled by a periodic Hamiltonian such as it appears in rotated graphene bilayers. Ab initio and tight-binding approaches are combined and show that the spatially periodic coupling between the two Dirac electron gazes can renormalize strongly their velocity. We investigate in particular small angles of rotation and show that the velocity tends to zero in this limit. The localization is confirmed by an analysis of the eigenstates which are localized essentially in the AA zones of the Moire patterns.Comment: 4 pages, 5 figure
    corecore