250 research outputs found

    Community Supervision And Violent Offenders: What The Research Tells Us And How To Improve Outcomes

    Get PDF
    This Article explores the supervision of violent offenders in the community and reviews the research on effective (and ineffective) practices. Included is a discussion of the scope and diversity of violent offenses, a review of the research related to intermediate sanctions such as intensive supervision and electronic monitoring, as well as the application of the Risk, Need and Responsivity model to community supervision. Finally, the challenges of translating research into practice is discussed along with recommendations on how we can improve community supervision

    What are the causes of hypomagnesemia?

    Get PDF
    The causes of magnesium depletion and hypomagnesemia are decreased gastrointestinal (GI) absorption and increased renal loss. Decreased GI absorption is frequently due to diarrhea, malabsorption, and inadequate dietary intake. Common causes of excessive urinary loss are diuresis due to alcohol, glycosuria, and loop diuretics. Medical conditions putting persons at high risk for hypomagnesemia are alcoholism, congestiveheart failure, diabetes, chronic diarrhea, hypokalemia, hypocalcemia, and malnutrition (strength of recommendation: C, based on expert opinion, physiology, and case series). Evidence suggests that magnesium deficiency is both more common and more clinically significant than generally appreciated

    A Quasi Experimental Evaluation of Thinking for a Change: A Real-World Application

    Get PDF
    Due to the popularity of cognitive behavioral interventions, programs that follow this model are often assumed to be effective. Yet evaluations of specific programs have been slow in coming. The current investigation seeks to bridge this gap by evaluating the effectiveness of Thinking for a Change (TFAC), a widely used cognitive behavioral curriculum for offenders. Furthermore, this evaluation provides a “real-world” test of TFAC, because it was implemented by line staff in a community corrections agency as opposed to being a pilot project implemented by program developers. The results of the analyses indicate that offenders participating in the TFAC program had a significantly lower recidivism rate than similar offenders that were not exposed to the program

    Inclusive Jet and Hadron Suppression in a Multi-Stage Approach

    Full text link
    We present a new study of jet interactions in the Quark-Gluon Plasma created in high-energy heavy-ion collisions, using a multi-stage event generator within the JETSCAPE framework. We focus on medium-induced modifications in the rate of inclusive jets and high transverse momentum (high-pTp_{\mathrm{T}}) hadrons. Scattering-induced jet energy loss is calculated in two stages: A high virtuality stage based on the MATTER model, in which scattering of highly virtual partons modifies the vacuum radiation pattern, and a second stage at lower jet virtuality based on the LBT model, in which leading partons gain and lose virtuality by scattering and radiation. Coherence effects that reduce the medium-induced emission rate in the MATTER phase are also included. The \trento\ model is used for initial conditions, and the (2+1)D VISHNU model is used for viscous hydrodynamic evolution. Jet interactions with the medium are modeled via 2-to-2 scattering with Debye screened potentials, in which the recoiling partons are tracked, hadronized, and included in the jet clustering. Holes left in the medium are also tracked and subtracted to conserve transverse momentum. Calculations of the nuclear modification factor (RAAR_{\mathrm{AA}}) for inclusive jets and high-pTp_{\mathrm{T}} hadrons are compared to experimental measurements at RHIC and the LHC. Within this framework, we find that two parameters for energy-loss, the coupling in the medium and the transition scale between the stages of jet modification, suffice to successfully describe these data at all energies, for central and semi-central collisions, without re-scaling the jet transport coefficient q^\hat{q}.Comment: 33 pages, 23 figure

    Multi-scale evolution of charmed particles in a nuclear medium

    Full text link
    Parton energy-momentum exchange with the quark gluon plasma (QGP) is a multi-scale problem. In this work, we calculate the interaction of charm quarks with the QGP within the higher twist formalism at high virtuality and high energy using the MATTER model, while the low virtuality and high energy portion is treated via a (linearized) Boltzmann Transport (LBT) formalism. Coherence effect that reduces the medium-induced emission rate in the MATTER model is also taken into account. The interplay between these two formalisms is studied in detail and used to produce a good description of the D-meson and charged hadron nuclear modification factor RAA across multiple centralities. All calculations were carried out utilizing the JETSCAPE framework

    Gold nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric pressure plasma and their potential for fuel cell electrocatalytic application

    Get PDF
    Conductive polymers have been increasingly used as fuel cell catalyst support due to their electrical conductivity, large surface areas and stability. The incorporation of metal nanoparticles into a polymer matrix can effectively increase the specific surface area of these materials and hence improve the catalytic efficiency. In this work, a nanoparticle loaded conductive polymer nanocomposite was obtained by a one-step synthesis approach based on room temperature direct current plasmaliquid interaction. Gold nanoparticles were directly synthesized from HAuCl4 precursor in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS). The resulting AuNPs/PEDOT: PSS nanocomposites were subsequently characterized under a practical alkaline direct ethanol fuel cell operation condition for its potential application as an electrocatalyst. Results show that AuNPs sizes within the PEDOT: PSS matrix are dependent on the plasma treatment time and precursor concentration, which in turn affect the nanocomposites electrical conductivity and their catalytic performance. Under certain synthesis conditions, unique nanoscale AuNPs/PEDOT: PSS core-shell structures could also be produced, indicating the interaction at the AuNPs/polymer interface. The enhanced catalytic activity shown by AuNPs/PEDOT: PSS has been attributed to the effective electron transfer and reactive species diffusion through the porous polymer network, as well as the synergistic interfacial interaction at the metal/polymer and metal/metal interfaces.Funding Agencies|UK EPSRC [EP/K022237/1, EP/M024938/1, EP/P00394X/1, EP/I013229/1]; National Natural Science Foundation of China [51203135]; InvestNI [PoC-325]; Department of Employment Learning; EU-COST Action [TD1208]</p

    The effectiveness of neighborhood watch

    Get PDF
    Background: Neighborhood watch (also known as block watch, apartment watch, home watch and community watch) grew out of a movement in the US during the late 1960s that promoted greater involvement of citizens in the prevention of crime. Since then, interest in neighborhood watch has grown considerably and recent estimates suggest that over a quarter of the UK population and over forty per cent of the US population live in areas covered by neighborhood watch schemes. Objectives: The primary aim of this review is to assess the effectiveness of neighborhood watch in reducing crime
    corecore