174 research outputs found

    Population substructure in Finland and Sweden revealed by the use of spatial coordinates and a small number of unlinked autosomal SNPs

    Get PDF
    Abstract Background Despite several thousands of years of close contacts, there are genetic differences between the neighbouring countries of Finland and Sweden. Within Finland, signs of an east-west duality have been observed, whereas the population structure within Sweden has been suggested to be more subtle. With a fine-scale substructure like this, inferring the cluster membership of individuals requires a large number of markers. However, some studies have suggested that this number could be reduced if the individual spatial coordinates are taken into account in the analysis. Results We genotyped 34 unlinked autosomal single nucleotide polymorphisms (SNPs), originally designed for zygosity testing, from 2044 samples from Sweden and 657 samples from Finland, and 30 short tandem repeats (STRs) from 465 Finnish samples. We saw significant population structure within Finland but not between the countries or within Sweden, and isolation by distance within Finland and between the countries. In Sweden, we found a deficit of heterozygotes that we could explain by simulation studies to be due to both a small non-random genotyping error and hidden substructure caused by immigration. Geneland, a model-based Bayesian clustering algorithm, clustered the individuals into groups that corresponded to Sweden and Eastern and Western Finland when spatial coordinates were used, whereas in the absence of spatial information, only one cluster was inferred. Conclusion We show that the power to cluster individuals based on their genetic similarity is increased when including information about the spatial coordinates. We also demonstrate the importance of estimating the size and effect of genotyping error in population genetics in order to strengthen the validity of the results.</p

    Humic Substances Enhance Chlorothalonil Phototransformation via Photoreduction and Energy Transfer

    Get PDF
    ABSTRACT: The photodegradation of chlorothalonil, a polychlorinated aromatic fungicide widely used in agriculture, was investigated under ultraviolet–visible irradiation in the presence and absence of different humic substances that significantly enhance the chlorothalonil phototransformation. On the basis of a kinetic model, an analytical study, the effect of scavengers, the chlorothalonil phosphorescence measurement, and varying irradiation conditions, it was possible to demonstrate that this accelerating effect is due to their capacity to reduce the chlorothalonil triplet state via H-donor reaction and to energy transfer from the triplet humic to ground state chlorothalonil. Energy transfer occurs at wavelengths below 450 nm and accounts for up to 30% of the reaction in deoxygenated medium upon irradiation with polychromatic light (300–450 nm). This process is more important with Elliott humic and fulvic acids and with humic acids extracted from natural carbonaceous material than with Nordic NOM and Pahokee peat humic acids. The obtained results are of high relevance to understanding the processes involved in chlorothalonil phototransformation and the photoreactivity of humic substances. Chlorothalonil is one of the rare molecules shown to react by energy transfer from excited humic substances

    Antiretroviral treatment use, co-morbidities and clinical outcomes among Aboriginal participants in the Australian HIV Observational Database (AHOD)

    Get PDF
    Background: There are few data regarding clinical care and outcomes of Indigenous Australians living with HIV and it is unknown if these differ from non-Indigenous HIV-positive Australians. Methods: AHOD commenced enrolment in 1999 and is a prospective cohort of HIV-positive participants attending HIV outpatient services throughout Australia, of which 20 (74 %) sites report Indigenous status. Data were collected up until March 2013 and compared between Indigenous and non-Indigenous participants. Person-year methods were used to compare death rates, rates of loss to follow-up and rates of laboratory testing during follow-up between Indigenous and non-Indigenous participants. Factors associated with time to first combination antiretroviral therapy (cART) regimen change were assessed using Kaplan Meier and Cox Proportional hazards methods. Results: Forty-two of 2197 (1.9 %) participants were Indigenous. Follow-up amongst Indigenous and non-Indigenous participants was 332 & 16270 person-years, respectively. HIV virological suppression was achieved in similar proportions of Indigenous and non-Indigenous participants 2 years after initiation of cART (81.0 % vs 76.5 %, p = 0.635). Indigenous status was not independently associated with shorter time to change from first- to second-line cART (aHR 0.95, 95 % CI 0.51-1.76, p = 0.957). Compared with non-Indigenous participants, Indigenous participants had significantly less frequent laboratory monitoring of CD4 count (rate:2.76 tests/year vs 2.97 tests/year, p = 0.025) and HIV viral load (rate:2.53 tests/year vs 2.93 tests/year, p < 0.001), while testing rates for lipids and blood glucose were almost half that of non-indigenous participants (rate:0.43/year vs 0.71 tests/year, p < 0.001). Loss to follow-up (23.8 % vs 29.8 %, p = 0.496) and death (2.4 % vs 7.1 %, p = 0.361) occurred in similar proportions of indigenous and non-Indigenous participants, respectively, although causes of death in both groups were mostly non-HIV-related. Conclusions: As far as we are aware, these are the first data comparing clinical outcomes between Indigenous and non-Indigenous HIV-positive Australians. The forty-two Indigenous participants represent over 10 % of all Indigenous Australians ever diagnosed with HIV. Although outcomes were not significantly different, Indigenous patients had lower rates of laboratory testing for HIV and lipid/glucose parameters. Given the elevated risk of cardiovascular disease in the general Indigenous community, the additional risk factor of HIV infection warrants further focus on modifiable risk factors to maximise life expectancy in this population

    Assessing population genetic structure via the maximisation of genetic distance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inference of the hidden structure of a population is an essential issue in population genetics. Recently, several methods have been proposed to infer population structure in population genetics.</p> <p>Methods</p> <p>In this study, a new method to infer the number of clusters and to assign individuals to the inferred populations is proposed. This approach does not make any assumption on Hardy-Weinberg and linkage equilibrium. The implemented criterion is the maximisation (via a <it>simulated annealing </it>algorithm) of the averaged genetic distance between a predefined number of clusters. The performance of this method is compared with two Bayesian approaches: STRUCTURE and BAPS, using simulated data and also a real human data set.</p> <p>Results</p> <p>The simulations show that with a reduced number of markers, BAPS overestimates the number of clusters and presents a reduced proportion of correct groupings. The accuracy of the new method is approximately the same as for STRUCTURE. Also, in Hardy-Weinberg and linkage disequilibrium cases, BAPS performs incorrectly. In these situations, STRUCTURE and the new method show an equivalent behaviour with respect to the number of inferred clusters, although the proportion of correct groupings is slightly better with the new method. Re-establishing equilibrium with the randomisation procedures improves the precision of the Bayesian approaches. All methods have a good precision for <it>F</it><sub><it>ST </it></sub>≥ 0.03, but only STRUCTURE estimates the correct number of clusters for <it>F</it><sub><it>ST </it></sub>as low as 0.01. In situations with a high number of clusters or a more complex population structure, MGD performs better than STRUCTURE and BAPS. The results for a human data set analysed with the new method are congruent with the geographical regions previously found.</p> <p>Conclusion</p> <p>This new method used to infer the hidden structure in a population, based on the maximisation of the genetic distance and not taking into consideration any assumption about Hardy-Weinberg and linkage equilibrium, performs well under different simulated scenarios and with real data. Therefore, it could be a useful tool to determine genetically homogeneous groups, especially in those situations where the number of clusters is high, with complex population structure and where Hardy-Weinberg and/or linkage equilibrium are present.</p

    Genetic Structure of Bluefin Tuna in the Mediterranean Sea Correlates with Environmental Variables

    Get PDF
    Abstract Background Atlantic Bluefin Tuna (ABFT) shows complex demography and ecological variation in the Mediterranean Sea. Genetic surveys have detected significant, although weak, signals of population structuring; catch series analyses and tagging programs identified complex ABFT spatial dynamics and migration patterns. Here, we tested the hypothesis that the genetic structure of the ABFT in the Mediterranean is correlated with mean surface temperature and salinity. Methodology We used six samples collected from Western and Central Mediterranean integrated with a new sample collected from the recently identified easternmost reproductive area of Levantine Sea. To assess population structure in the Mediterranean we used a multidisciplinary framework combining classical population genetics, spatial and Bayesian clustering methods and a multivariate approach based on factor analysis. Conclusions FST analysis and Bayesian clustering methods detected several subpopulations in the Mediterranean, a result also supported by multivariate analyses. In addition, we identified significant correlations of genetic diversity with mean salinity and surface temperature values revealing that ABFT is genetically structured along two environmental gradients. These results suggest that a preference for some spawning habitat conditions could contribute to shape ABFT genetic structuring in the Mediterranean. However, further studies should be performed to assess to what extent ABFT spawning behaviour in the Mediterranean Sea can be affected by environmental variation.(undefined
    corecore