13 research outputs found

    Soil protistology rebooted: 30 fundamental questions to start with

    Get PDF
    Protists are the most diverse eukaryotes. These microbes are keystone organisms of soil ecosystems and regulate essential processes of soil fertility such as nutrient cycling and plant growth. Despite this, protists have received little scientific attention, especially compared to bacteria, fungi and nematodes in soil studies. Recent methodological advances, particularly in molecular biology techniques, have made the study of soil protists more accessible, and have created a resurgence of interest in soil protistology. This ongoing revolution now enables comprehensive investigations of the structure and functioning of soil protist communities, paving the way to a new era in soil biology. Instead of providing an exhaustive review, we provide a synthesis of research gaps that should be prioritized in future studies of soil protistology to guide this rapidly developing research area. Based on a synthesis of expert opinion we propose 30 key questions covering a broad range of topics including evolution, phylogenetics, functional ecology, macroecology, paleoecology, and methodologies. These questions highlight a diversity of topics that will establish soil protistology as a hub discipline connecting different fundamental and applied fields such as ecology, biogeography, evolution, plant-microbe interactions, agronomy, and conservation biology. We are convinced that soil protistology has the potential to be one of the most exciting frontiers in biology

    Opuntia ficus-indica cladodes as a functional ingredient:bioactive compounds profile and their effect on antioxidant quality of bread

    No full text
    BACKGROUND: In the context of a balanced diet, the antioxidant-rich food consumption is a preventive way of many degenerative diseases. Consequently, improving the nutraceutical quality of traditional foods such as bakery products is an interesting approach. Considering the present consumer’s demand, cladodes from prickly pear that were traditionally used as a valuable food as well as in folk medicine for the treatment of several chronic diseases were investigated for their use in bread production to improve its functionality. METHODS: Bioactive substances were determined by liquid chromatography-high resolution electrospray ionization mass spectrometry (LC-HRESIMS) analysis. Dough rheological properties were characterized by alveographic measurements. Bread antioxidant quality was evaluated by total phenolics content, DPPH• radical-scavenging, metal (Fe(2+)) chelating and Fe(3+) reducing power determinations. RESULTS: LC-HRESIMS analysis of the cladodes extract allowed the identification of 9 flavonoids, 2 phenolics, 1 alkaloid and 1 terpenoid compounds. Cladodes powder enrichment induced important modifications on the dough rheological parameters in terms of the extensibility (L) and deformation energy (W) decrease. Moreover, cladodes powder addition to bread resulted in a decrease in both crust and crumb colour parameters (L*, a* and b*). A 5% supplementation resulted in an increase of the bread yield and bread specific volume by 8.9 and 25%, respectively. Interestingly, Bread containing cladodes powder showed enhanced total phenolics content and antioxidant potential as compared to the control. CONCLUSIONS: Substitution of wheat flour by the cladodes powder at 5% level was optimal for improving the total phenolics content and the antioxidant potential of bread without having any negative effect on its sensory acceptability. Cladodes from Opuntia ficus-indica could be considered as a potential health-promoting functional ingredient in bakery products

    Dothistroma septosporum Not Detected in Pinus sylvestris Seed Trees from Investigated Stands in Southern Poland

    No full text
    In recent years, the decline of pine stands in Europe, including Poland, has been caused by the emerging needle pathogen Dothistroma septosporum. Although this fungus appears to preferentially infect Pinus pini, P. pinaster or P. radiata in Southern Europe, it has been reported in stands of P. nigra, P. mugo and P. sylvestris from Southern Poland. Our preliminary tests of symptomatic needles of diseased pines, including black pine (P. nigra), showed the presence of both D. septosporum and D. pini—the latter as the first report in Poland. No other endophytic pathogen, i.e., Lecanosticta acicola or Cenangium ferruginosum, were found. More extensive molecular surveying based on β-tub2 amplification of DNA in needle samples from 72 seed trees of P. sylvestris in nine different Forest Districts of Southern Poland did not find the presence of D. septosporum. Our study revealed that the seed trees from which we collected propagation material were free from the pathogen, and its endophytic behavior was not confirmed in our testing. Consequently, these investigated trees of P. sylvestris should be suitable for seed collection and propagation, following the requirements of “good” phytosanitary quality as “pathogen-free” pine seeds used for reforestation
    corecore