1,516 research outputs found

    Microgravity nucleation and particle coagulation experiments support

    Get PDF
    A hollow sphere model is developed to predict the range of supersaturation ratio values for refractory metal vapors in a proposed experimental nucleation apparatus. Since the experiments are to be carried out in a microgravity environment, the model neglects the effects of convection and assumes that the only transfer of vapors through an inert gas atmosphere is by conduction and molecular diffusion. A consistent set of physical properties data is assembled for the various candidate metals and inert ambient gases expected to be used in the nucleation experiments. Transient partial pressure profiles are computed for the diffusing refractory species for two possible temperature distributions. The supersaturation ratio values from both candidate temperature profiles are compared with previously obtained experimetnal data on a silver-hydrogen system. The model is used to simulate the diffusion of magnesium vapor through argon and other inert gas atmospheres over ranges of initial and boundary conditions. These results identify different combinations of design and operating parameters which are liekly to produce supersaturation ratio values high enough to induce homogeneous nucleation in the apparatus being designed for the microgravity nucleation experiments

    Concordant cues in faces and voices: testing the backup signal hypothesis

    Get PDF
    Information from faces and voices combines to provide multimodal signals about a person. Faces and voices may offer redundant, overlapping (backup signals), or complementary information (multiple messages). This article reports two experiments which investigated the extent to which faces and voices deliver concordant information about dimensions of fitness and quality. In Experiment 1, participants rated faces and voices on scales for masculinity/femininity, age, health, height, and weight. The results showed that people make similar judgments from faces and voices, with particularly strong correlations for masculinity/femininity, health, and height. If, as these results suggest, faces and voices constitute backup signals for various dimensions, it is hypothetically possible that people would be able to accurately match novel faces and voices for identity. However, previous investigations into novel face–voice matching offer contradictory results. In Experiment 2, participants saw a face and heard a voice and were required to decide whether the face and voice belonged to the same person. Matching accuracy was significantly above chance level, suggesting that judgments made independently from faces and voices are sufficiently similar that people can match the two. Both sets of results were analyzed using multilevel modeling and are interpreted as being consistent with the backup signal hypothesis

    Esmase skisofreenia farmakoteraapia Eestis: võrdlus kohaliku ja rahvusvaheliste ravijuhistega

    Get PDF
    Psühhooside farmakoteraapia ja ravijuhised on eri riikides erinevad. Uuringu eesmärgiks oli analüüsida ja kirjeldada esmaste skisofreeniaepisoodide farmakoteraapiat Eestis. Töös analüü- siti septembrist 2005 kuni septembrini 2006 Põhja-Eesti Regionaalhaigla ja TÜ Kliinikumi psühhiaatriakliinikutesse hospitaliseeritud skisofreenia ja skisotüüpse häirega patsientide farmakoteraapiat. Vaadeldi manustatud ravimite annuseid, antipsühhootikumide polüteraapia esinemise sagedust ning atüüpiliste ja konventsionaalsete antipsühhootikumide määramise sagedust. Tulemusi võrreldi kohalike ja rahvusvaheliste ravijuhistega. Esmase skisofreenia farmakoteraapia Eestis on suures osas vastavuses Eesti ja rahvusvaheliste ravijuhistega, kuid sageli kasutati konventsionaalseid antipsühhootikume ja levinud oli polüteraapia antipsühhootikumidega. Tõenduspõhise farmakoteraapia soodustamiseks oleks otstarbekas ajakohastada Eesti ravijuhiseid. Eesti Arst 2008; 87(9):601−60

    Avoiding the avoidable: Towards a European heat waves risk governance

    Get PDF
    The death toll of recent heat waves in developed countries has been remarkably high, contradicting the common assumption that high levels of economic and technological development automatically lead to lower vulnerability to weather extremes. Future climate change may further increase this vulnerability. In this article we examine some recent evidence of heat wave-related mortality and we conclude that while economic wealth and technological capacity might be a necessary condition for adequately coping with adverse climate change effects, they are not sufficient. Questions of awareness, preparedness, organizational issues, and actor networks have to be addressed in a proactive and focused manner in order to avoid future heat wave damages. We propose some practical consequences for heat wave adaptation measures by adopting a risk governance framework that can be universally applied, as it is sufficiently flexible to deal with the multi-level and often fragmented reality of existing coping measures

    The Newtonian potential of thin disks

    Full text link
    The one-dimensional, ordinary differential equation (ODE) by Hur\'e & Hersant (2007) that satisfies the midplane gravitational potential of truncated, flat power-law disks is extended to the whole physical space. It is shown that thickness effects (i.e. non-flatness) can be easily accounted for by implementing an appropriate "softening length" λ\lambda. The solution of this "softened ODE" has the following properties: i) it is regular at the edges (finite radial accelerations), ii) it possesses the correct long-range properties, iii) it matches the Newtonian potential of a geometrically thin disk very well, and iv) it tends continuously to the flat disk solution in the limit λ→0\lambda \rightarrow 0. As illustrated by many examples, the ODE, subject to exact Dirichlet conditions, can be solved numerically with efficiency for any given colatitude at second-order from center to infinity using radial mapping. This approach is therefore particularly well-suited to generating grids of gravitational forces in order to study particles moving under the field of a gravitating disk as found in various contexts (active nuclei, stellar systems, young stellar objects). Extension to non-power-law surface density profiles is straightforward through superposition. Grids can be produced upon request.Comment: Accepted for publication in A&

    ASSESSING VARIABILITY OF AGREEMENT MEASURES IN REMOTE SENSING USING A BAYESIAN APPROACH

    Get PDF
    Remote sensing imagery is a popular accessment tool in agriculture, forestry, and rangeland management. Spectral classification of imagery provides a means of estimating production and identifYing potential problems, such as weed, insect, and disease infestations. Accuracy of classification is traditionally based on ground truthing and summary statistics such as Cohen\u27s Kappa. Variability assessment and comparison of these quantities have been limited to asymptotic procedures relying on large sample sizes and gaussian distributions. However, asymptotic methods fail to take into account the underlying distribution of the classified data and may produce invalid inferential results. Bayesian methodology is introduced to develop probability distributions for Cohen\u27s Conditional Kappa that can subsequently be used for image assessment and comparison. Techniques are demonstrated on a set of images used in identifYing a species of weed, yellow starthistle, at various spatial resolutions and flying times

    A key-formula to compute the gravitational potential of inhomogeneous discs in cylindrical coordinates

    Full text link
    We have established the exact expression for the gravitational potential of a homogeneous polar cell - an elementary pattern used in hydrodynamical simulations of gravitating discs. This formula, which is a closed-form, works for any opening angle and radial extension of the cell. It is valid at any point in space, i.e. in the plane of the distribution (inside and outside) as well as off-plane, thereby generalizing the results reported by Durand (1953) for the circular disc. The three components of the gravitational acceleration are given. The mathematical demonstration proceeds from the "incomplete version of Durand's formula" for the potential (based on complete elliptic integrals). We determine first the potential due to the circular sector (i.e. a pie-slice sheet), and then deduce that of the polar cell (from convenient radial scaling and subtraction). As a by-product, we generate an integral theorem stating that "the angular average of the potential of any circular sector along its tangent circle is 2/PI times the value at the corner". A few examples are presented. For numerical resolutions and cell shapes commonly used in disc simulations, we quantify the importance of curvature effects by performing a direct comparison between the potential of the polar cell and that of the Cartesian (i.e. rectangular) cell having the same mass. Edge values are found to deviate roughly like 2E-3 x N/256 in relative (N is the number of grid points in the radial direction), while the agreement is typically four orders of magnitude better for values at the cell's center. We also produce a reliable approximation for the potential, valid in the cell's plane, inside and close to the cell. Its remarkable accuracy, about 5E-4 x N/256 in relative, is sufficient to estimate the cell's self-acceleration.Comment: Accepted for publication in Celestial Mechanics and Dynamical Astronom

    ESTIMATING THE LIKELIHOOD OF YELLOW STARTHISTLE OCCURRENCE USING AN EMPIRICALLY DERIVED NONLINEAR REGRESSION MODEL

    Get PDF
    Yellow starthistle is a noxious weed common in the semiarid climate of Central Idaho and other western states. Early detection of yellow starthistle and predicting its infestation potential have important scientific and managerial implications. Weed detection and delineation are often carried out by visual observation or survey techniques. However, such methods may be ineffective in detecting sparse infestations. The distribution of yellow starthistle over a large region may be affected by various exogenous variables such as elevation, slope and aspect. These landscape variables can be used to develop prediction models to estimate the potential invasion of yellow starthistle into new areas. A nonlinear prediction model has been developed based on a polar coordinate transformation to investigate the ability of landscape characteristics to predict the likelihood of yellow starthistle occurrence in North Central Idaho. The study region included the lower Snake river and parts of the Salmon and Clearwater basins encompassing various land use categories. The model provided accurate estimates of incidence of yellow starthistle within each specified land use category and performed well in subsequent statistical validations
    • …
    corecore