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ABSTRACT 

Remote sensing imagery is a popular accessment tool in agriculture, forestry, and 
rangeland management. Spectral classification of imagery provides a means of estimating 
production and identifYing potential problems, such as weed, insect, and disease infestations. 
Accuracy of classification is traditionally based on ground truthing and summary statistics such as 
Cohen's Kappa. Variability assessment and comparison of these quantities have been limited to 
asymptotic procedures relying on large sample sizes and gaussian distributions. However, 
asymptotic methods fail to take into account the underlying distribution of the classified data and 
may produce invalid inferential results. Bayesian methodology is introduced to develop 
probability distributions for Cohen's Conditional Kappa that can subsequently be used for image 
assessment and comparison. Techniques are demonstrated on a set of images used in identifYing a 
species of weed, yellow starthistle, at various spatial resolutions and flying times. 

I. INTRODUCTION 

Images from remote sensing are increasingly becoming useful tools in land management. 
Using computer interpretation, spectral information in digital and photographic images can be 
classified into meaningful categories. Common uses might include determination of land use in 
rangeland management, monitoring and prediction of inventories in forestry, or large scale 
detection of weed, insect and disease infestations in agriculture. Before using remote sensing for 
management decisions, however, the quality of the classification should first be assessed. 
Traditionally, statistics such as Cohen's Kappa (Cohen, 1960) have been used for comparison to 
known ground truth sites (e.g. Congalton, et al., 1983; Hudson and Ramm, 1987; Rosenfield and 
Fitzpatrick-Lins, 1986; Congalton, 1991). Kappa provides a relative measure of agreement, 
ranging from no agreement (random chance) to perfect agreement. Inferences based on Kappa 
provide a means for assessing and comparing spectral classifications. Variability of the Kappa 
statistic and related inferential methods have traditionally been computed based on large sample 
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size and asymptotic normality assumptions. While this is a general solution, it may lead to invalid 
inferential results. 

An alternative approach is a Bayesian methodology which directly incorporates the 
discrete nature of the data. Using numerically derived posterior distributions, point estimation 
and variability measures can be obtained through most probable values and appropriate moments. 
Inferential results are then obtained through probability intervals on Kappa estimates, and for the 
purpose of image comparison, through the distribution of pairwise differences. 

These techniques are demonstrated using remotely sensed imagery developed to detect the 
weedy species yellow starthistle in Northern Idaho. Comparisons are made between different 
flying times and among various image resolutions. 

ILMETHODS 

The basic unit of measurement within a digital image is the pixel. Pixels represent a point 
on an image which corresponds to a spatial location on the ground. They are recorded as discrete 
values based on the spectral response at that location. Computerized classification algorithms 
place each pixel into C predefined categories. For a fixed number of pixels, N, the true category 
of that location is field checked resulting in "ground truth". A cross-classification of ground truth 
and categorized data results in a C x C error matrix: 

Ground Truth 

1 2 3 c 
1 Xu Xu X13 ... Xic 

Classification 2 XlI X22 X23 ... X2c 

3 X3I X32 X33 ... X3c 

... . .. ... ... . .. 
c XcI Xa XcJ ... Xcc 

N.I N.2 N.3 N.c N 

C C C C 

" " x.·= " x· = " x .=N . 1 ",3 C . 1 ",3 C L...J L...J lJ L...J I. L...J.J ,= ... - ; J= ,.. _. 
i=1 j=1 i=1 j=1 

where 
Letf; = xjN,f. = NJN and!; = N./N, then 

A C C C 

K=(Llir Lh 1)/(1-Lh I) 
;=1 ;=1 ;=1 

;=1.2,3,...C (1) 
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is a measure of agreement between rows and columns (Cohen, 1960). K (Kappa) has been 
suggested as a measure of agreement for use in remotely sensed data (Congalton, 1991). The 
error matrix can also be used to evaluate ommissional (1 - xJN.J and commissional (1 - xJNJ 
error rates, where xJN.i and xJNi. are commonly referred to as producer's and user's accuracy 
(Congalton, 1991). These alternative measures may provide a more meaningful expression of the 
degree of agreement between ground truth and classification, justification of which has been 
addressed elsewhere (price and Shafii, In preparation). For the purpose of this study, we will 
confine our discussion to Kappa and other related measures. 

K may be partitioned into conditional agreement (called conditional Kappas) for each of 
the C classifications as: 

(2) 

for class i, where 
c c ..... 
L ail I L aiZ==K (Coleman, 1966; Light, 1969). The estimated large 
i=1 i=1 

"" sample variance of~ under the assumption of independence of rows and columns is given by 
(Bishop, 1975) as: 

V(K)==(lIN)(h)(l-f)l(lf)(l-!;) (3) 

Remote sensing presents a special case for R. For a given image, the ground truth totals, 
N.i' are fixed constants. Rewriting R to reflect this gives 

Ki==lfjfFfJ/(l-!;)==(xjN.i-Ni. IN)I(l-Ni. IN). (4) 

The number of pixels correctly classified for the ith class, Xu. can be assumed as a binomial 
random variable, Xu - bin(Pi> N.J where Pi and N.i are the true classified proportion and total for 
class i, respectively. The quantity, Ni.> represents the number of pixels in the image indicated as 
class L After classification of an image, Le. from the user's perspective, the Ni. are no longer 
variable and may be considered fixed. Likewise, the total number of pixels in the image, N, is 
constant. Thus, (4) becomes a monotonic transformation of Xu and the information pertaining to 
Xu may be used to derive a specified distribution for R. 

The Bayesian posterior distribution is proportional to the product of a prior distribution, 
n(.), and a data-based likelihood, ~(.). The likelihood in this case is based on the binomial 
distribution given by: 

(5) 

For development of the prior distribution, the principle of maximum entropy may be used. 
In the discrete case, the entropy of a distribution is defined as: 
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(6) 

where Pk is the probability of the kth event (Shannon, 1948). Maximizing (6) constrained to 
~Pk =1 and any known information, I, leads to a prior distribution, WI> which has the most 
uncertainty given I (Jaynes, 1968). When no prior information is assumed, e.g. I=null, then the 
maximization results in the condition Pk = Pk', for k '* k'. This concept can be extended to the 
continuous case (Jaynes, 1968) and applied to the binomial parameter Pi to give 

W/=null = 1t(PJ = Constant = A, (7) 

which is also consistent with the concept of the Least Informative Probability (LIP) as outlined by 
Loredo, 1990. 

The resulting posterior distribution for Pi is now given by: 

1t(P,Jx. ,N) ~ 1t(P)'i1(P,Jx.,N) = A( ::) P,"'(l -pf,-x· (8) 

.... 
Since E[Xu] = PiN.i> the expected value for ~ is then 

(9) 

and the posterior distribution ofR, 1t(RIXu, Ni> N.J, can then be derived from 

P(P;s.b) = P«P;-Ni. IN)/(l-Ni. IN)s.(b-Ni. IN)/(l-Ni. IN) = P(K; s.b ) (10) 

where b '* b are constants. 
Based on (10), a (1-2a) probability interval or credible region for ~ can be defined as: 

"'" CI ~ ..... I-a 
P(K. s.K.s.K. ) = 1 - 2a , , , (11) 

where:Rt' and:R/ oct are the ath and l-ath percentiles of the estimated posterior distribution for R. 
This region represents with 1 - 2a surety, the most plausible values for ~ given the information 
available,!' 

Methods for pairwise comparisons of independent estimates of conditional kappas can also 
be developed. Let w(kJ and <I>(~) be the p~sterior distributions for conditional kappas ~ and ~, 
respectively. Then the joint distribution of~ and K;, assu~ng ~dependence, is defined as't(Kv 
~) = w(kJ<I>(KJ and the distribution of the difference, Dij = ~ - ~, is given by: 
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(12) 

Traditionally, Bayesian posterior distributions have been derived analytically. This would 
require simplifying the necessary computations. While certainly desirable, analytical derivations 
may not always be practical. Given the recent advances in computational ability and availability, 
numerical derivations have become a viable alternative. In this study, posterior distributions were 
computed numerically while probability intervals and contrast distributions were derived through 
interpolation. All computations were carried out with either the SAS datastep (SAS, 1991) or 
custom C applications. Programs codes are available from the authors at 
www.uidaho.eduJag/statprog/kappa. 

III. EMPIRICAL RESULTS 

Yellow starthistle is well adapted to the semiarid canyonland topography typical of 
Northern Idaho. It is toxic to horses and reduces forage quality for other livestock. Due to the 
steep topography of the region, ground surveys are difficult and remote sensing offers an 
attractive alternative for the detection and location of yellow starthistle. The data used in this 
study was collected as a means of assessing the remote sensing potential. 

The remote sensing study area was near Lapwai, Idaho (Lass, Carson, and Callihan, 
1996). The target area was two by three kilometers (Figure 1). Digital aerial images were 
obtained on June 21 and July 17, 1994 at resolutions giving 0.5, 1.0, and 2.0 square meters per 
pixel. A fourth resolution of 4.0 square meters was simulated by averaging the 2.0 square meter 
data. Within the study area, 386 ground truth sites were established using the Global Positioning 
System (GPS) and verified as to their true ground cover. Initial computer classification produced 
14 categories representing three levels of yellow starthistle infestation as well as other non-target 
objects such as grass, trees, bare ground, etc. These categories were redefined and collapsed to 
retain the three yellow starthistle classes (1: 90-100%,2: 70-89%, and 3: 30-69%) as well as a 
fourth class encompassing everything else (non-starthistle). 

Based on these classes and the ground truth sites, an error matrix for each flight date -
resolution combination was developed. The error matrix for the 4.0 m2 resolution on June 21, for 
example, is given in Table 1 (other error matrices are not reproduced here). This matrix indicates 
that there were 519 on the ground true pixels in Class 1 (90-100% yellow starthistle) of which 
323 were correctly identified. The classified image resulted in 361 pixels for this class, indicating 
that in this case, pixels from other categories were misclassified as Class 1. A total of 1414 pixels 
were available at the ground truth sites for this resolution. 

R values were computed for all classes at each resolution within each date. For 
simplicity, only a subset is shown here. Table 2 lists the R values for the 0.5 m2 and 4.0 m2 

resolutions on the June 21 flight. In general, the 4.0 m2 resolution had larger R values than that 
of 0.5 m2, suggesting better agreement of 4.0 m2 resolution with ground truth. Classes 2 and 3, 
70-89% and 30-69% yellow starthistle , respectively, showed poor agreement at both resolutions. 
Class 4 (non-starthistle) had the highest R values, which is not surprising since this class 
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represented all non-starthistle objects and, therefore, comprised the majority of the pixels and was 
the most easily detected. 

Both Bayesian and asymptotic standard errors for each ~ are also given in Table 2. As 
might be expected, the larger sample sizes of the 0.5 m2 resolution resulted in standard errors 
much smaller than those of the 4.0 m2 resolution. While the results are similar between the two 
techniques, the Bayesian standard error estimates are slightly larger than their asymptotic counter 
parts. This is probably due to the approximate nature of the asymptotic technique and its reliance 
on large sample gaussian theory which assumes more known information about the parameters 
and the underlying distribution than the Bayesian posterior. 

The Bayesian posterior distributions for 1(1 (Class 1) at each resolution on the first flight 
date are presented in Figure 2. This figure readily illustrates the effect of resolution on both the 
point estimates (most probable values or mode) as well as their associated variability (spread). 
Image resolutions l.0, 2.0, and 4.0 m2 provided similar K1 values with a large degree of 
overlapping, while clearly out performing the 0.5 m2 resolution. 

Probability intervals or credible regions developed from these distributions are shown in 
Figure 3. Class 4 (non-starthistle) and Class 1 (90-100% yellow starthistle) gave the best 
agreement with ground truth at all resolutions. The intermediate yellow starthistle Classes 2 and 
3, had poor agreement at all resolutions. The 0.5 m2resolution appears to be in the worst 
agreement with ground truth. In order to quantitatively assess this difference, pair-wise 
comparisons were conducted among resolutions. The probability intervals for the differences ... 
between K1 values on June 21 are listed in Table 3. As might be inferred from Figures 2 and 3, 
only the 0.5 m2 resolution shows any significant difference (interval does not cover zero). 

Based on similar pair-wise comparison procedures, optimum resolutions for each flight 
time can be established (Table 4a). In cases where no clear optimum existed, larger resolutions 
were chosen for economic reasons. Smaller resolutions entail more flight time and result in larger 
image files which require more storage and, thus, are more expensive to acquire and process. 
Within the first flight date, the 4.0 m2 resolution was optimum for all classes. The second flight 
date differed only in the intermediate yellow starthistle, Classes 2 and 3, where the 0.5 m2 

resolution worked best. 
Using the results from Table 4a, the best flight date was selected from pair-wise 

comparisons of the optimum resolutions for each class (Table 4b). These indicated a preference 
for the later flight date in Classes 1 and 2, and no preference for Classes 3 and 4. Class 1, 90-
100% yellow starthistle, is likely to give better results at later flight dates because more plants will 
be in bloom at that time, increasing their visibility. The lack of date preference in Class 4, all non­
starthistle, is also to be expected since this class includes a conglomerate of objects such as roads, 
water, forest, crops, grass lands, and buildings which show up on the images equally well no 
matter when the image was aquired. Interpretation offlight time results of Classes 2 and 3 was 
deemed inappropriate since these classes demonstrated poor ground truth agreement (low 
accuracy) and, therefore, were unlikely to represent their designated intermediate yellow 
starthistle categories. 
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IV. CONCLUSIONS 

Remote sensing accuracy is an important consideration in agriculture and land 
management. Cohen's Kappa, which is traditionally used to measure relative accuracy in remote 
sensing, is one of several accuracy statistics available. Bayesian techniques provide a means of 
variability assessment and comparison of the Kappa statistic based on its underlying discrete 
multinomial distribution. Correspondence between Bayesian results and those of the gaussian 
approximations were good, however, the similarity is expected to decrease with smaller sample 
sizes. This is due to the truncated nature of the data under these circumstances, whereby the 
Bayesian techniques would be more reliable, especially for the purpose of interval estimation. 
Further refinement of agreement measures may be necessary to fully reflect the correct probability 
model given ground truth data. 
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Table 1. Error matrix for yellow starthistle detection on June 21, 1994. 

1 

Classification 2 

3 

4 

1 = 90-100% yellow starthistle 
2 = 70-89% yellow starthistle 
3 = 30-69% yellow starthistle 
" = Non-yellow starthisle 

323 

34 

59 

103 

519 

Ground Truth 

2 3 

18 2 

6 1 

14 19 

29 39 

67 61 

4 

18 361 

17 58 

53 145 

679 850 

767 1414 

Table 2. Conditional Kappa values and their associated Bayesian and 
asymptotic standard errors for 0.5 and 4.0 m2 resolutions on June 21, 1994. 

Resolution Class 

0.5 ml 1 

2 

3 

4 

4.0 ml 1 

2 

3 

4 

1 = 90-100% yellow starthistJe 
2 = 70-89% yellow starthistle 
3 = 30-69% yellow starthistle ,,= Non-yellow starthisle 

. "'" K j Bayes SE Asym. SE 

0.3072 0.0034 0.0022 

0.0526 0.0048 0.0034 

0.0360 0.0068 0.0056 

0.6827 0.0043 0.0045 

0.4929 0.0285 0.0204 

0.0506 0.0364 0.0247 

0.2328 0.0661 0.0423 

0.7124 0.0289 0.0299 
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Table 3. Pair-wise differences and the associated 95% 
probability intervals for all resolutions. Differences are 
based on Kl (90-100% yellow starthistle). 

Resolution Lower Difference Upper 

1mvs2m -0.0009 0.0262 0.0519 

1m vs 4m -0.0466 0.0021 0.0499 

1m vs .Sm 0.1742 0.1878 0.2003 

2m vs 4m -0.0774 -0.0241 0.0275 

2m vs .Sm 0.1363 0.1616 0.1850 

4m vs .Sm 0.1363 0.1857 0.2306 

Table 4. Optimum resolutions and flight times for the four yellow 
starthistle classes. 

Table 4a. 

Flight Time Class 
. 

Early 1 
(June) 

2 

3 

4 

Late 1 
(July) 

2 

3 

Resolution 
.. 

4m (1m) 

4m (2m) 

4m 

4m 

4m 

.5m 

.5m 

Table 4b. 

Class • Flight Time 

1 Late 

2 Late 

3 EarlylLate 

4 EarlylLate 

1 = 90-100% yellow starthistle 
2 = 70-89% yellow starthistle 
3 = 30-69% yellow starthistle 
4 = Non-yellow starthisle 

Kansas State University 

4 4m (2m) 
** Val ues in parentheses denote actual 

optima. Larger resolutions were 
chosen for economic reasons. 
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Applied Statistics in Agriculture 

Figure 1. Grey scale image of yellow starthistle classification. Lighter areas indicate higher 
levels of yellow starthistle. 

Figure 2. Posterior distributions ofK} for the four image resolutions. 

n:(K. I XII' N •. , N .• ) 

0.038 
0.5 m 2 

1.0 m 2 

0.032 

0.026 

0.020 

0.014 

0.008 

0.002 

0.28 0.32 0.36 0.40 0.44 0.48 0.52 0.56 0.60 
..... 
Kl 

53 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1998/proceedings/5



54 Kansas State University 

Figure 3. 95% probability intervals for ~ at all image resolutions on June 21, 1994. 

'" K~ 
0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 
1 2 3 

0.5 

1 = 90-100% yellow starthistle 
2 - 70-89% yellow starthistle 
3 = 30-69% yellow starthistle 
-I = Non-yellow starthis1e 

4 1 2 3 4 123 4 1 2 3 4 

Class 

1.0 2.0 4.0 
Resolution (m 2) 
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