1,643 research outputs found

    Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India

    Get PDF
    Emissions of airborne particles from biomass burning are a significant source of black carbon (BC) and brown carbon (BrC) in rural areas of developing countries where biomass is the predominant energy source for cooking and heating. This study explores the molecular composition of organic aerosols from household cooking emissions with a focus on identifying fuel-specific compounds and BrC chromophores. Traditional meals were prepared by a local cook with dung and brushwood-fueled cookstoves in a village in Palwal district, Haryana, India. Cooking was done in a village kitchen while controlling for variables including stove type, fuel moisture, and meal. Fine particulate matter (PM2.5) emissions were collected on filters, and then analyzed via nanospray desorption electrospray ionization-high-resolution mass spectrometry (nano-DESI-HRMS) and high-performance liquid chromatography-photodiode array-high-resolution mass spectrometry (HPLC-PDA-HRMS) techniques. The nano-DESI-HRMS analysis provided an inventory of numerous compounds present in the particle phase. Although several compounds observed in this study have been previously characterized using gas chromatography methods a majority of the species in the nano-DESI spectra were newly observed biomass burning compounds. Both the stove (chulha or angithi) and the fuel (brushwood or dung) affected the composition of organic aerosols. The geometric mean of the PM2.5 emission factor and the observed molecular complexity increased in the following order: brushwood-chulha (7.3±1.8 g kg-1 dry fuel, 93 compounds), dung-chulha (21.1±4.2 g kg-1 dry fuel, 212 compounds), and dung-angithi (29.8±11.5 g kg-1 dry fuel, 262 compounds). The mass-normalized absorption coefficient (MACbulk) for the organic-solvent extractable material for brushwood PM2.5 was 3.7±1.5 and 1.9±0.8m2 g-1 at 360 and 405 nm, respectively, which was approximately a factor of two higher than that for dung PM2.5. The HPLC-PDA-HRMS analysis showed that, regardless of fuel type, the main chromophores were CxHyOz lignin fragments. The main chromophores accounting for the higher MACbulk values of brushwood PM2.5 were C8H10O3 (tentatively assigned to syringol), nitrophenols C8H9NO4, and C10H10O3 (tentatively assigned to methoxycinnamic acid)

    Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol

    Get PDF
    The effect of relative humidity (RH) on the composition and concentrations of gas-phase products and secondary organic aerosol (SOA) generated from the photooxidation of isoprene under high-NO<sub>x</sub> conditions was investigated. Experiments were performed with hydrogen peroxide as the OH precursor and in the absence of seed aerosol. The relative yields of most gas-phase products were the same regardless of initial water vapor concentration with exception of hydroxyacetone and glycolaldehyde, which were considerably affected by RH. A significant change was observed in the SOA composition, with many unique condensed-phase products formed under humid (90 % RH) vs. dry (<2 % RH) conditions, without any detectable effect on the rate and extent of the SOA mass growth. There is a 40 % reduction in the number and relative abundance of distinct particle-phase nitrogen-containing organic compounds (NOC) detected by high resolution mass spectrometry. The suppression of condensation reactions, which produce water as a product, is the most important chemical effect of the increased RH. For example, the total signal from oligomeric esters of 2-methylglyceric acid was reduced by about 60 % under humid conditions and the maximum oligomer chain lengths were reduced by 7–11 carbons. Oligomers formed by addition mechanisms, without direct involvement of water, also decreased at elevated RH but to a much smaller extent. The observed reduction in the extent of condensation-type oligomerization at high RH may have substantial impact on the phase characteristics and hygroscopicity of the isoprene aerosol. The reduction in the amount of organic nitrates in the particle phase has implications for understanding the budget of NOC compounds

    Potential Energy Driven Spin Manipulation via a Controllable Hydrogen Ligand

    Get PDF
    Spin-bearing molecules can be stabilized on surfaces and in junctions with desirable properties such as a net spin that can be adjusted by external stimuli. Using scanning probes, initial and final spin states can be deduced from topographic or spectroscopic data, but how the system transitioned between these states is largely unknown. Here we address this question by manipulating the total spin of magnetic cobalt hydride complexes on a corrugated boron nitride surface with a hydrogen- functionalized scanning probe tip by simultaneously tracking force and conductance. When the additional hydrogen ligand is brought close to the cobalt monohydride, switching between a corre- lated S = 1 /2 Kondo state, where host electrons screen the magnetic moment, and a S = 1 state with magnetocrystalline anisotropy is observed. We show that the total spin changes when the system is transferred onto a new potential energy surface defined by the position of the hydrogen in the junction. These results show how and why chemically functionalized tips are an effective tool to manipulate adatoms and molecules, and a promising new method to selectively tune spin systems

    Abelian Landau-Pomeranchuk-Migdal effects

    Full text link
    It is shown that the high-energy expansion of the scattering amplitude calculated from Feynman diagrams factorizes in such a way that it can be reduced to the eikonalized form up to the terms of inverse power in energy in accordance with results obtained by solving the Klein-Gordon equation. Therefore the two approaches when applied to the suppression of the emission of soft photons by fast charged particles in dense matter should give rise to the same results. A particular limit of thin targets is briefly discussed.Comment: 14 pages, LATEX, 1 Fig. ps, submitted to Mod. Phys. Lett.

    Fractional Dynamics from Einstein Gravity, General Solutions, and Black Holes

    Full text link
    We study the fractional gravity for spacetimes with non-integer dimensions. Our constructions are based on a geometric formalism with the fractional Caputo derivative and integral calculus adapted to nonolonomic distributions. This allows us to define a fractional spacetime geometry with fundamental geometric/physical objects and a generalized tensor calculus all being similar to respective integer dimension constructions. Such models of fractional gravity mimic the Einstein gravity theory and various Lagrange-Finsler and Hamilton-Cartan generalizations in nonholonomic variables. The approach suggests a number of new implications for gravity and matter field theories with singular, stochastic, kinetic, fractal, memory etc processes. We prove that the fractional gravitational field equations can be integrated in very general forms following the anholonomic deformation method for constructing exact solutions. Finally, we study some examples of fractional black hole solutions, fractional ellipsoid gravitational configurations and imbedding of such objects in fractional solitonic backgrounds.Comment: latex2e, 11pt, 40 pages with table of conten

    The Landau-Pomeranchuk-Migdal effect in QED

    Get PDF
    The calculation of the radiative energy loss encountered by a fast charged particle which undergoes multiple scattering is being investigated. A detailed derivation of the Landau-Pomeranchuk-Migdal coherent effect in QED is given, focusing on the specific feature of the Coulomb interaction. As a result the radiation intensity per unit length in the coherent regime is shown to be proportional to ω\sqrt \omega for a photon energy ω\omega times a logarithmic enhancement which is determined exactly.Comment: 19 pages, LaTeX styl

    Path Integral Approach to the Non-Relativistic Electron Charge Transfer

    Get PDF
    A path integral approach has been generalized for the non-relativistic electron charge transfer processes. The charge transfer - the capture of an electron by an ion passing another atom or more generally the problem of rearrangement collisions is formulated in terms of influence functionals. It has been shown that the electron charge transfer process can be treated either as electron transition problem or as elastic scattering of ion and atom in the some effective potential field. The first-order Born approximation for the electron charge transfer cross section has been reproduced to prove the adequacy of the path integral approach for this problem.Comment: 19 pages, 1 figure, to appear in Journal of Physics B: Atomic, Molecular & Optical, vol.34, 200

    On distributions of functionals of anomalous diffusion paths

    Full text link
    Functionals of Brownian motion have diverse applications in physics, mathematics, and other fields. The probability density function (PDF) of Brownian functionals satisfies the Feynman-Kac formula, which is a Schrodinger equation in imaginary time. In recent years there is a growing interest in particular functionals of non-Brownian motion, or anomalous diffusion, but no equation existed for their PDF. Here, we derive a fractional generalization of the Feynman-Kac equation for functionals of anomalous paths based on sub-diffusive continuous-time random walk. We also derive a backward equation and a generalization to Levy flights. Solutions are presented for a wide number of applications including the occupation time in half space and in an interval, the first passage time, the maximal displacement, and the hitting probability. We briefly discuss other fractional Schrodinger equations that recently appeared in the literature.Comment: 25 pages, 4 figure

    Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis

    No full text
    International audienceAerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA). The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ?2.5 ?m (PM2.5) were collected during the MCMA-2003 Field Campaign for elemental and multivariate analyses. Proton-Induced X-ray Emission (PIXE), Proton-Elastic Scattering Analysis (PESA) and Scanning Transmission Ion Microscopy (STIM) measurements were done to determine concentrations of 19 elements from Na to Pb, hydrogen, and total mass, respectively. The most abundant elements from PIXE analysis were S, Si, K, Fe, Ca, and Al, while the major emissions sources associated with these elements were industry, wind-blown soil, and biomass burning. Wind trajectories suggest that metals associated with industrial emissions came from northern areas of the city whereas soil aerosols came from the southwest and increased in concentration during dry conditions. Elemental markers for fuel oil combustion, V and Ni, correlated with a large SO2 plume to suggest an anthropogenic, rather than volcanic, emissions source. By subtracting major components of soil and sulfates determined by PIXE analysis from STIM total mass measurements, we estimate that approximately 50% of non-volatile PM2.5 consisted of carbonaceous material

    Flamelet Model Application for Non-Premixed Turbulent Combustion

    Get PDF
    The current Final Report contains results of the study which was performed in Scientific Research Center 'ECOLEN' (Moscow, Russia). The study concerns the development and verification of non-expensive approach for modeling of supersonic turbulent diffusion flames based on flamelet consideration of the chemistry/turbulence interaction (FL approach). Research work included: development of the approach and CFD tests of the flamelet model for supersonic jet flames; development of the simplified procedure for solution of the flamelet equations based on partial equilibrium chemistry assumption; study of the flame ignition/extinction predictions provided by flamelet model. The performed investigation demonstrated that FL approach allowed to describe satisfactory main features of supersonic H 2/air jet flames. Model demonstrated also high capabilities for reduction of the computational expenses in CFD modeling of the supersonic flames taking into account detailed oxidation chemistry. However, some disadvantages and restrictions of the existing version of approach were found in this study. They were: (1) inaccuracy in predictions of the passive scalar statistics by our turbulence model for one of the considered test cases; and (2) applicability of the available version of the flamelet model to flames without large ignition delay distance only. Based on the results of the performed investigation, we formulated and submitted to the National Aeronautics and Space Administration our Project Proposal for the next step research directed toward further improvement of the FL approach
    • …
    corecore