81 research outputs found

    Dyck tilings, increasing trees, descents, and inversions

    Full text link
    Cover-inclusive Dyck tilings are tilings of skew Young diagrams with ribbon tiles shaped like Dyck paths, in which tiles are no larger than the tiles they cover. These tilings arise in the study of certain statistical physics models and also Kazhdan--Lusztig polynomials. We give two bijections between cover-inclusive Dyck tilings and linear extensions of tree posets. The first bijection maps the statistic (area + tiles)/2 to inversions of the linear extension, and the second bijection maps the "discrepancy" between the upper and lower boundary of the tiling to descents of the linear extension.Comment: 24 pages, 9 figure

    Type III secretion proteins PcrV and PcrG from Pseudomonas aeruginosa form a 1:1 complex through high affinity interactions

    Get PDF
    BACKGROUND: Pseudomonas aeruginosa, an increasingly prevalent opportunistic pathogen, utilizes a type III secretion system for injection of toxins into host cells in order to initiate infection. A crucial component of this system is PcrV, which is essential for cytotoxicity and is found both within the bacterial cytoplasm and localized extracellularly, suggesting that it may play more than one role in Pseudomonas infectivity. LcrV, the homolog of PcrV in Yersinia, has been proposed to participate in effector secretion regulation by interacting with LcrG, which may act as a secretion blocker. Although PcrV also recognizes PcrG within the bacterial cytoplasm, the roles played by the two proteins in type III secretion in Pseudomonas may be different from the ones suggested for their Yersinia counterparts. RESULTS: In this work, we demonstrate by native mass spectrometry that PcrV and PcrG expressed and purified from E. coli form a 1:1 complex in vitro. Circular dichroism results indicate that PcrG is highly unstable in the absence of PcrV; in contrast, both PcrV alone and the PcrV:PcrG complex have high structural integrity. Surface plasmon resonance measurements show that PcrV interacts with PcrG with nanomolar affinity (15.6 nM) and rapid kinetics, an observation which is valid both for the full-length form of PcrG (residues 1–98) as well as a form which lacks the C-terminal 24 residues, which are predicted to have low secondary structure content. CONCLUSIONS: PcrV is a crucial component of the type III secretion system of Pseudomonas, but the way in which it participates in toxin secretion is not understood. Here we have characterized the interaction between PcrV and PcrG in vitro, and shown that PcrG is highly unstable. However, it associates readily with PcrV through a region located within its first 74 amino acids to form a high affinity complex. The fact that PcrV associates and dissociates quickly from an unstable molecule points to the transient nature of a PcrV:PcrG complex. These results are in agreement with analyses from pcrV deletion mutants which suggest that PcrV:PcrG may play a different role in effector secretion than the one described for the LcrV:LcrG complex in Yersinia

    Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles

    Get PDF
    ANRS CO21 CODEX cohortInternational audienceHIV controllers (HICs), rare HIV-1 infected individuals able to control viral replication without antiretroviral therapy, are characterized by an efficient polyfunctional and cytolytic HIV-specific CD8+ T cell response. The mechanisms underlying the induction and maintenance of such response in many HICs despite controlled viremia are not clear. Dendritic cells play a crucial role in the generation and reactivation of T cell responses but scarce information is available on those cells in HICs. We found that monocyte derived dendritic cells (MDDCs) from HICs are less permissive to HIV-1 infection than cells from healthy donors. In contrast MDDCs from HICs are particularly efficient at capturing HIV-1 particles when compared to cells from healthy donors or HIV-1 patients with suppressed viral load on antiretroviral treatment. MDDCs from HICs expressed on their surface high levels of syndecan-3, DC-SIGN and MMR, which could cooperate to facilitate HIV-1 capture. The combination of low susceptibility to HIV-1 infection but enhanced capacity to capture particles might allow MDDCs from HICs to preserve their function from the deleterious effect of infection while facilitating induction of HIV-specific CD8+ T cells by cross-presentation in a context of low viremia

    PLoS One

    Get PDF
    Compared to the general population, HIV-infected patients are at higher risk of developing non-AIDS-defining cancers. Chronic HCV infection has also been associated with a higher risk than that of the general population of developing cancers other than hepatocarcinoma. Evaluation of the impact of HCV-related factors on non-AIDS-defining and non HCV-liver (NANL) related cancers among HIV/HCV co-infected patients are scarce. The aim of this study was to identify the impact of HIV/HCV clinical characteristics on NANL related cancers in a large cohort of HIV/HCV-coinfected patients followed from 2005 to 2017. Cox proportional hazards models with delayed entry were used to estimate factors associated with NANL related cancer. Among 1391 patients followed for a median of 5 years, 60 patients developed NANL related cancers, yielding an incidence rate of 8.9 per 1000 person-years (95% CI, [6.6-11.1]). By final multivariable analysis, after adjustment for sex, tobacco or alcohol consumption, baseline CD4 cell count and HCV sustained viral response (SVR), age and a longer duration since HIV diagnosis were independently associated with a higher risk of NANL related cancer (aHR for each additional year 1.10, 95% CI 1.06-1.14, p<0.0001 and 1.06, 95% CI 1.01-1.11, p = 0.02, respectively). Duration of HCV infection, cirrhosis, HCV viral load, genotype and SVR were not associated with the occurrence of NANL related cancer. Among HIV/HCV-coinfected patients, age and the duration of HIV infection were the only characteristics found to be associated with the occurrence of NANL related cancer. In contrast, no association was observed with any HCV-related variables

    The GenTree Platform: growth traits and tree-level environmental data in 12 European forest tree species

    Get PDF
    Background: Progress in the field of evolutionary forest ecology has been hampered by the huge challenge of phenotyping trees across their ranges in their natural environments, and the limitation in high-resolution environmental information. Findings: The GenTree Platform contains phenotypic and environmental data from 4,959 trees from 12 ecologically and economically important European forest tree species: Abies alba Mill. (silver fir), Betula pendula Roth. (silver birch), Fagus sylvatica L. (European beech), Picea abies (L.) H. Karst (Norway spruce), Pinus cembra L. (Swiss stone pine), Pinus halepensis Mill. (Aleppo pine), Pinus nigra Arnold (European black pine), Pinus pinaster Aiton (maritime pine), Pinus sylvestris L. (Scots pine), Populus nigra L. (European black poplar), Taxus baccata L. (English yew), and Quercus petraea (Matt.) Liebl. (sessile oak). Phenotypic (height, diameter at breast height, crown size, bark thickness, biomass, straightness, forking, branch angle, fructification), regeneration, environmental in situ measurements (soil depth, vegetation cover, competition indices), and environmental modeling data extracted by using bilinear interpolation accounting for surrounding conditions of each tree (precipitation, temperature, insolation, drought indices) were obtained from trees in 194 sites covering the species’ geographic ranges and reflecting local environmental gradients. Conclusion: The GenTree Platform is a new resource for investigating ecological and evolutionary processes in forest trees. The coherent phenotyping and environmental characterization across 12 species in their European ranges allow for a wide range of analyses from forest ecologists, conservationists, and macro-ecologists. Also, the data here presented can be linked to the GenTree Dendroecological collection, the GenTree Leaf Trait collection, and the GenTree Genomic collection presented elsewhere, which together build the largest evolutionary forest ecology data collection available

    Between but not within species variation in the distribution of fitness effects

    Get PDF
    New mutations provide the raw material for evolution and adaptation. The distribution of fitness effects (DFE) describes the spectrum of effects of new mutations that can occur along a genome, and is therefore of vital interest in evolutionary biology. Recent work has uncovered striking similarities in the DFE between closely related species, prompting us to ask whether there is variation in the DFE among populations of the same species, or among species with different degrees of divergence, i.e., whether there is variation in the DFE at different levels of evolution. Using exome capture data from six tree species sampled across Europe we characterised the DFE for multiple species, and for each species, multiple populations, and investigated the factors potentially influencing the DFE, such as demography, population divergence and genetic background. We find statistical support for there being variation in the DFE at the species level, even among relatively closely related species. However, we find very little difference at the population level, suggesting that differences in the DFE are primarily driven by deep features of species biology, and that evolutionarily recent events, such as demographic changes and local adaptation, have little impact

    A ZnS 4 Structural Zinc Site in the Helicobacter pylori Ferric Uptake Regulator

    No full text
    International audienceThe ferric uptake regulator (Fur) belongs to the family of the metal-responsive transcriptional regulators. Fur is a global regulator found in all proteobacteria. It controls the transcription of a wide variety of genes involved in iron metabolism but also in oxidative stress or virulence factor synthesis. As a general view, Fur proteins were considered to be dimeric proteins both in solution and when bound to DNA. However, our recent data demonstrate that Fur proteins can be classified into two subfamilies, according to their quaternary structure. The group of dimers is represented by E. coli, V. cholerae and Y. pestis Fur and the group of highly stable tetramers by P. aeruginosa and F. tularensis Fur. Here, another tetrameric structure of a PaFur mutant containing manganese and zinc metal ions is described. Through biochemical, structural and computational studies, we have deciphered the important structural characteristics of the tetramers and studied the main interactions responsible for their strength. Potential or mean force calculations for tetramer formation have been determinant to quantify these interactions. Moreover calculations allow us to propose that some conserved residues prevent the tetramerization in the subfamily of dimeric Fur. Keywords Metal homeostasis Á Structure of metalloregulators Á Quaternary structure Á Iron uptake Á Molecular interactions Á Potential of mean force Á Ferric uptake Á Tetrame
    corecore