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Background: Progress in the field of evolutionary forest ecology has been hampered by the huge challenge of phenotyping
trees across their ranges in their natural environments, and the limitation in high-resolution environmental information.
Findings: The GenTree Platform contains phenotypic and environmental data from 4,959 trees from 12 ecologically and
economically important European forest tree species: Abies alba Mill. (silver fir), Betula pendula Roth. (silver birch), Fagus
sylvatica L. (European beech), Picea abies (L.) H. Karst (Norway spruce), Pinus cembra L. (Swiss stone pine), Pinus halepensis Mill.
(Aleppo pine), Pinus nigra Arnold (European black pine), Pinus pinaster Aiton (maritime pine), Pinus sylvestris L. (Scots pine),
Populus nigra L. (European black poplar), Taxus baccata L. (English yew), and Quercus petraea (Matt.) Liebl. (sessile oak).
Phenotypic (height, diameter at breast height, crown size, bark thickness, biomass, straightness, forking, branch angle,
fructification), regeneration, environmental in situ measurements (soil depth, vegetation cover, competition indices), and
environmental modeling data extracted by using bilinear interpolation accounting for surrounding conditions of each tree
(precipitation, temperature, insolation, drought indices) were obtained from trees in 194 sites covering the species’
geographic ranges and reflecting local environmental gradients. Conclusion: The GenTree Platform is a new resource for
investigating ecological and evolutionary processes in forest trees. The coherent phenotyping and environmental
characterization across 12 species in their European ranges allow for a wide range of analyses from forest ecologists,
conservationists, and macro-ecologists. Also, the data here presented can be linked to the GenTree Dendroecological
collection, the GenTree Leaf Trait collection, and the GenTree Genomic collection presented elsewhere, which together build

the largest evolutionary forest ecology data collection available.

Keywords: regeneration; DBH; height; crown size; bark thickness; fruit number; stem straightness; branch angle; forking

index; soil depth

The impacts of climate change and land use change on forests
are already severe, as observed, e.g., following the extreme sum-
mer drought of 2018 that triggered a massive increase in mor-
tality in Central European forests [1]. Furthermore, changes are
expected to be acute in the future, altering distribution ranges
and ecosystem functioning, as well as the interactions among
species [2]. Forecasts indicate that near-surface temperature will
shift poleward at mean rates of 80-430 m yr—! for temperate
forests during the 21st century [3]. This translates into north-
ward shifts of trees’ bioclimatic envelopes of 300-800 km within
1 century [3]. More importantly, the frequency and intensity of
drought events, heat waves, forest fires, and pest outbreaks [4]
are expected to increase.

In the light of these changes, species and forest ecosystem
resilience will depend on the extent and structure of pheno-
typic plasticity, genetic variation, and adaptive potential, as well
as dispersal ability. From the results of extensive networks of
field experiments (provenance trials), it has long been shown
that tree species are locally adapted at multiple spatial scales.
In Europe, where most tree populations have established fol-
lowing post-glacial recolonization, such patterns of local adap-
tation must have developed rapidly and despite long generation
time and extensive gene flow [5], a process enabled by high lev-
els of within-population plasticity, genetic and epigenetic vari-
ation, and large population sizes [6]. Recent work has shown
that genetic variation for stress response may be strongly struc-
tured along environmental gradients, such as water availability
[7], temperature [8], or photoperiod [9]. However, the spatial pat-
terns of current adaptation in particular phenotypic traits are

only partly informative regarding the potential for future adap-
tation under a changing climate. To advance our understanding
of the adaptive potential of trees, it is crucial to evaluate multi-
ple traits in parallel to be able to model their putative response
to new environmental conditions.

Recently, substantial effort has been made to identify spe-
cific genes and gene combinations that have undergone selec-
tion, by associating mutations at candidate loci with phenotypes
related to stress events [10, 11] or with environmental variables
[12]. This latter example by Yeaman and co-workers [12] is one
of the first association studies in forest tree species on a large
genomic scale and the first to investigate convergent local adap-
tation in distantly related tree species. However, progress in this
field has been hampered by limited genomic resources, the lack
of small-scale, individual tree-level environmental information
[13], and the huge challenge of phenotyping trees in their natu-
ral environments [14, 15].

The GenTree Platform aims to address these challenges by
providing individual-level, high-resolution phenotypic and en-
vironmental data for a set of up to 20 sampling sites for each of
12 ecologically and economically important forest tree species
across Europe. For a subset of 7 species (B. pendula, F. sylvatica,
P. abies, P. pinaster, P. sylvestris, P. nigra, and Q. petraea), the sam-
pling of sites was carried outin pairs, i.e., contained 2 stands that
were close enough to be connected by gene flow but situated in
contrasting environments.

The sampling design described here was used for collect-
ing phenotypic traits and ecological data. Also, tree ring and
wood density measurements for the same trees were assessed
[16], and datasets on leaf traits, including specific leaf area and
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isotopic content [17], as well as high-density single-nucleotide
polymorphism data for each tree, were established, that will be
published in GeneBank. All data and metadata information are
gathered in the GnplIS repository [33], which makes updates pos-
sible [18].

We investigated the extent to which other datasets compara-
ble to the data presented here exist by screening our 12 species
in the TRY Plant Trait Data Base, the International Tree-Ring
Data Bank, and the Biomass And Allometry Database for woody
plants (BAAD). While this is a systematic approach, it leaves out
a large number of tree species and therefore we cannot claim
to have a comprehensive overview of the existing data. How-
ever, all 3 databases are large collections that include at least
some of the tree measurements that we present. Even though
these are tremendous resources, the major difference is that ow-
ing to their nature as collecting points of numerous indepen-
dent datasets, there is no coherent sampling scheme in these
collections as such, meaning that the number of trees per site,
the method of tree selection, measured phenotypes, and pro-
vided environmental information vary greatly and therefore do
not allow for coherent comparative analyses such as those of
the GenTree Platform. For example, BAAD reports diameter at
breast height (DBH) data for only 4 of the species presented here,
namely, B. pendula with 3 populations, F. sylvatica with 2 pop-
ulations, P. abies with 4 populations, and P. sylvestris with 10
populations. In the larger TRY database, all of our species are
represented, but the variability of sampling schemes is much
more heterogeneous concerning traits, number of populations
per species, and metadata. For example, DBH measurements are
being reported 232 times from a total of 12 B. pendula popula-
tions. Of these, almost all of the 170 measurements are from 1
population while from many other populations only 1 or up to 5
measurements are reported. Also, the measurements stem from
5 different original studies and thus have very different levels of
additional information. We conclude that the core value of our
reported data lies in the coherent sampling design, as well as
the large number of sampled populations and individuals per
species.

A machine readable summary of the GenTree data is provided in
Table 1. All recorded parameters are listed in Table 2.

Sampling strategy

To optimize the sampling design for genome scans and associ-
ation studies, we followed the recent theoretical work by Lot-
terhos and Whitlock [19, 20], which indicates that a paired sam-
pling design has more power to detect the genomic signatures of
local adaptation. Using this framework, populations from across
the natural range of a species are sampled in pairs, with the
2 sites in each pair situated geographically close enough to be
genetically similar at neutral genes owing to a common evolu-
tionary history and ongoing gene flow, but in distinct selective
niches such that the local fitness optimum differs between the
2 sites. This sampling confers more power to detect evidence
of selection in the genome through either association with en-
vironmental or phenotypic variables or the detection of out-
liers (e.g., for genetic differentiation, Fst) [19, 20]. Trees are very
amenable to a pairwise approach because they are known to be
locally adapted, often at fine spatial scales [21, 22] and irrespec-
tive of gene flow distances [6]. This strategy was followed for the
aforementioned subset of 7 species for which genomic resources
were available (i.e., full or draft genome).

Such local niche contrasts are neither easy to identify nor
readily available when environments are homogenous. There-
fore, a second principle of the sampling design was to cover a
large part of each species’ natural geographic range (Fig. 1) and
environmental space (Fig. 2) to capture selective niche varia-
tion. Finally, sites with a history of intensive management or
any other intense and obvious anthropogenic or natural dis-
turbances were avoided. This strategy was followed for all 12
species.

Selection of trees on sites

A minimum of 25 trees was sampled per site to capture the nat-
ural phenotypic and genetic variability. Trees had to be mature
but not senescent, dominant or codominant, and had to show no
signs of significant damage due to pests and diseases or gener-
ally low vigor. Sampled trees were >30 m apart and, where pos-
sible, were chosen along several parallel linear transects across
each site, typically resulting in 2-4 transects per sampling site
to keep the overall sampling area <3 ha.

Site and tree metadata

Sites were labeled by a 2-letter country code (ISO 3166-1 alpha-2)
followed by a 2-letter species code and a 2-digit site number (Ta-
ble 2). Individual tree labels added another 2-digit tree number.
Every tree was permanently labeled so that future studies can
resample subsets or the entire GenTree collection to gain time-
series data of individual traits or to add new phenotypes to the
analyses. Be aware that permission of the respective landown-
ers must be obtained before sampling. Handheld GPS devices
were used to record the position of each tree. The precision of
GPS measurements in forests is notoriously challenging: regular
commercial devices achieve an accuracy of ~8-15 m with good
satellite coverage. Given that trees were selected with a mini-
mum distance of 30 m this accuracy was sufficient for the cor-
rect positioning of trees relative to each other. An overall popu-
lation position was defined by taking the mean value across all
the individual tree measurements. Coordinates were in decimal
degrees with 4 decimal units to reflect the general measurement
accuracy (~11.1 m) and were stored in the WGS 84 reference sys-
tem. GPS devices were also used to record the tree’s elevation, ei-
ther directly or through post hoc positioning in digital elevation
models. The local aspect at the site of the tree was measured by
a compass in 5° steps in the direction of the steepest slope.

The metadata for each site consists of an ID code (see above),
sampling date, location (GPS coordinates, see above), and eleva-
tion in meters above sea level. Each stand was also characterized
as being monospecific or mixed (in the latter case the most com-
mon co-occurring species was noted), stand structure was noted
as single or multiple layered, and the age distribution as even or
uneven (categorical variables).

Competition index at tree level

Competition indices (CIs) were calculated following Canham
et al. [23] and Lorimer [24]. Specifically, the first index following
Lorimer [24] was calculated as NCI = Y7 , (DBH;/DBH;) /dist;
that follows the same notation as above, and where DBH is the
DBH of the subject trees j and i.

Second, the distance-dependent competition index
(NCI) following Canham et al. [23] was computed as
NCI = Y7, (DBH;/dist;), where DBH; is the DBH of competi-
tor tree i and dist; is the distance between the subject tree
and competitor tree i. This index assumes that the net effects
of neighboring trees vary as a direct function of the size of
the neighbors and as an inverse function of the distance.
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Table 1 Machine readable data summary

Measurements
Technology types

Factor Types
Sample characteristic organism

Sample characteristic location

For this purpose, the distance to the 5 nearest neighbors of
each target tree was measured and their respective DBH was
measured.

Moreover, it was noted whether competitor trees were con-
specific to the target tree or not. Each multi-stemmed tree was
considered as a single competitor where each stem of >15 cm
DBH was measured and added to the sum of means.

Environmental characteristics within subplots around each tree
Surrounding each target tree, slope, vegetation cover (without
tree cover), and stone content were assessed in a 10 m x 10 m
plot. The slope was assessed using a clinometer. Vegetation and
rock cover were estimated in the classes <5%, 5-20%, 20-40%,
40-60%, 60-80%, 80-95%. Soil depth was estimated at 3 random
points in the quadrat to a maximum of 60 cm with a pike and
was averaged across these 3 values.

Regeneration

In the same 10 m x 10 m plots, natural regeneration of the tar-
get species was assessed according to the following 4 classes:
absent (no recruit visible), scattered (few/scattered individuals),
grouped (presence of scattered groups within the plot), and
abundant (regularly spread all over the plot) and is indicated
in the database with values from 1 to 4. As this method can-
not resolve maternity, the results indicate realized fecundity at
the stand level.

DBH

DBH in centimeters was measured at a stem height of 1.3 m
either by using a caliper to measure 2 perpendicular diame-
ters and subsequently taking the average of these 2 measure-
ments or by measuring the circumference of the tree using a
tape and computing the diameter from that value. Each mea-
surement was performed to the nearest 0.1 cm. If a tree had
>1 trunk, all of them were measured and the average was
recorded.

Height

Height from the ground to the top of the crown in meters was
measured using a hypsometer (Nikon forestry Pro Laser, Tokyo,
Japan), a laser vertex (Haglof Vertex III, Langsele, Sweden), or a
Laser Range Meter (Bosch GLM 50 C, Leinfelden-Echterdingen,
Germany). For short trees, a telescopic measuring pole was used.
Height was noted to the nearest 0.1 m. To forego errors intro-
duced by measuring height on sloping ground, height measure-

Vegetation cover, rock cover, soil depth, competition index,
regeneration, diameter at breast height, height, crown size, bark
thickness, number of fruits, stem straightness, branch angle, forking
index

Bark gauges, calculations, caliper, clinometer, GPS device, increment
corer, laser distance measurement, telescopic measuring pole
Tree species

Abies alba, Betula pendula, Fagus sylvatica, Picea abies, Pinus cembra, Pinus
halepensis, Pinus nigra, Pinus pinaster, Pinus sylvestris, Populus nigra, Taxus

baccata, Quercus petraea
Europe

ments on slopes were conducted from the same elevation as the
tree’s base by approaching the tree sideways. Where this was not
possible, a slope correction factor was used.

Crown size

The crown size in square meters was measured as the circular
and ellipsoid plane area of the crown. For this, we measured 2
perpendicular crown diameters (canopy 1 and 2) with a mea-
suring tape, with the first measurement being made along the
longest axis of the crown, from 1 edge to the other, and by vi-
sually projecting the crown margin onto the ground to the near-
est decimeter. For the ellipse area, we calculated (d; /2) = (d; /2) % =
and for the circular area (d;+d;/2)%xx.

Bark thickness

For measuring bark thickness in millimeters, we used bark
gauges (Haglof Barktax, Langsele, Sweden) or a tape after ex-
tracting the bark with a small caliper (if bark could be detached
without tree damage) or increment borers (Haglof increment
borer, Langsele, Sweden) in case of strong and thick bark. Five
measurements were taken for each tree at breast height and the
average was calculated. For tree species with a clear dichotomy
of bark thickness (e.g., old P. nigra, T. baccata), we included >2
measurements from the thinner and thicker bark areas each.

Number of fruits

In conifers, cones were counted by providing the average of 3
rounds of counting, made by an observer on the ground using
binoculars. Only mature (brown) and closed cones were counted,
i.e., those containing seeds, and not immature (green) or open
cones, whose seeds had already been dispersed (open cones
often stay on the branch for several years after seeds are dis-
persed). In broadleaves, the number of fruits was counted for 30
seconds, repeating the procedure 3 times to then average the 3
counts.

In the case of species with very small fruits that are hard to
see individually and in locations with a very limited view of the
canopy, each tree was assigned to 1 of 5 categories, namely, O (no
fruits), 1 (a few fruits in a small section of the crown), 2 (a few
fruits in >2 sections of the crown), 3 (a lot of fruits in a small
section of the crown), and 4 (a lot of fruits in >2 sections of the
crown).

Straightness

Straightness of the stem was classified according to 5 levels: (1)
No straight stem, (2) moderate or strong bends, (3) slight to mod-
erate bend in different directions, (4) fairly straight (in 1 direction
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Table 2: Variables names, explanations, and specifications measured for all 4,959 trees and all 194 GenTree sites

Variable name Variable explanation

GenTree Platform metadata

mO1l.spec Species abbreviations

mO02.country Country abbreviations

m03.site.num Site numbers

mo04.site.id Complete site-ID per species
mO05.tree.num Tree numbers

mo6.tree.id Complete tree ID
mO7.trial.name Site name

mo08.lat Latitude

mo09.lon Longitude

GenTree Platform phenotypes

p01l.height Height

p02.dbh DBH

p03.bark Bark thickness mean
pO4.trunk Trunk straightness/flexuosity
p05.branch Branch angle

pO6.fork Forking index

pO7.canopy.1
p08.canopy.2
p09.crown.ellipse
p10.crown.round

Canopy projection REP 1
Canopy projection REP 2
Crown ellipse

Crown size

pll.regeneration
pl2.fruit. mean
pl3.basal.area

Natural regeneration
Fruit/cone number

GenTree Platform in situ environmental measurements

eO1l.plant.cover Total plant cover

e02.comp.index.a
e03.comp.index.b

Competition index A
Competition index B

e04.comp.index.c
e05.comp.index.d

Competition index C
Competition index D

e06.status

e07.elevation Elevation of the tree
e08.slope Slope at the tree level
e09.aspect Aspect at the tree level

e10.soil.depth
ell.stone.content

Mean soil depth
Mean stone content

el2.rock.cover Total rock cover

slightly crooked), (5) absolutely straight. This was performed on

Specification

Abies Alba (AA), Betula pendula (BP), Fagus sylvatica (FS), Picea abies (PA),
Pinus cembra (PC), Pinus halepensis (PH), Pinus nigra (PN), Populus nigra
(PO), Pinus pinaster (PP), Pinus sylvestris (PS), Quercus petraea (QP), Taxus
baccata (TB)

Isocode 6133-2; Austria (AT), Switzerland (CH), Germany (DE), Spain
(ES), Finland (FI), France (FR), Great Britain (GB), Greece (GR), Italy (IT),
Lithuania (LT), Norway (NO), Sweden (SE)

Running numbers of sites per species 01-24

Merger of m01-m03

Running numbers within sites 01-25

Merger of m01-m03, m05

Decimal degrees, WGS84
Decimal degrees, WGS84

Tree height, m

Diameter at breast height, cm

Mean value of bark thickness, cm

5: Absolutely straight; 4: fairly straight (in 1 direction slightly
crooked); 3: slight to moderate bend in different directions; 2:
moderate or strong bends; 1: no straight stem

1: <23° (steep); 2: 23-45°; 3: 45-67°; 4: 67-90° (plain); 5: >90°

1: Fork at the lower third of tree height; 2: fork at middle third; 3: fork
at upper third; 4: no fork—multiplied by 10 and then divided by the
number of stems

Crown diameter projection, m

Crown diameter projection, m

Area of an ellipse (di/2)x(d;/2)sr, m?

As some only have 1 diameter, round areas with the mean diameter
[(di+d;)/2]%#, m?

1: Absent; 2: scattered; 3: groups; 4: abundant

Number of fruits

1: None; 2: little (5-20%); 3: low (20-40%); 4: medium (40-60%); 5: high
(60-80%); 6: very high (80-95%); 7: full cover (>95%)

CI assessed following Canham et al. [23], and multi-stems as the sum
CI assessed following Canham et al. [23], and multi-stems assessing
the sum of basal areas and then the DBH

CI assessed following Lorimer [24], and multi-stems as the sum

CI assessed following Lorimer [24], multi-stems assessing the sum of
basal areas and then the DBH

Dominant, co-dominant

Meters above sea level

Slope in degrees

0-360°

Mean of 3 measures (measurement to a maximum depth of 60 cm)
Mean of 3 measures: 1: none; 2: little (5-20%); 3: low (20-40%); 4:
medium (40-60%); 5: high (60-80%); 6: very high (80-95%); 7: full cover
(>95%)

1: None; 2: little (5-20%); 3: low (20-40%); 4: medium (40-60%); 5: high
(60-80%); 6: very high (80-95%); 7: full cover (>95%)

Branch angle
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the lower 15 m of the tree beginning from the ground with the
crown not taken into account. In the case of forked stems, only
the trunk below the deepest forking point was evaluated.

Branch angle was classified at 2 successive whorls according to
a 5-scale scheme in conifers with (1) <237, (2) 23-45°, (3) 45-67°,
(4) 67-90°, (5) >90°, and a 4-scale scheme in broadleaves omitting
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Figure 1: Sampling sites (black dots) and distributions of the 12 selected tree species (dark green shading) for in situ phenotype measurements. Distribution maps are
based on a comprehensive high-resolution tree occurrence dataset from the European Union [30].

the >90° class. In black poplar, only the top 2 m of the crown were dex took into account 2 parameters. First a score for the relative
considered. position of the fork: (4) no forking, (3) forking in the upper third
of the tree, (2) forking in the middle third of the tree, (1) forking
in the lower third of the tree; and second the number of axes
(stems). The score of the relative position was then multiplied
by 10 and divided by the number of axes.

Forking index
The branching of a tree in 2 (fork) or more (ramiform) equally
thick and long stems was assessed with a forking index. The in-
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Figure 2: Climate-space diagrams for the 12 selected European tree species with annual mean temperature on the x-axis and annual total precipitation on the y-axis.
Grey points represent species occurrences based on a comprehensive high-resolution tree occurrence dataset for Europe [30] and black dots indicate the GenTree sites.
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Topography, soil, and climate data were compiled to character-
ize environmental conditions in each GenTree sampling site as
follows.

We used the European digital elevation model to describe to-
pographic conditions at 25 m spatial resolution with a vertical
accuracy of approximately +7 m (EU-DEM v. 1.1 from the Coper-
nicus program [34]). We derived 14 variables (Table 3) based on
biological hypotheses and their informative power at the local
scale [25]. We calculated morphometric, hydrologic, and radia-
tion grids for each GenTree site and visually inspected data in-
tegrity using SAGA 6.2 [26] (details in Table 3).

We collected available data on water capacity at 7 soil depths us-
ing SoilGrids250m [27]. We estimated Pearson correlation coeffi-
cients, r, between soil layers and then averaged the 4 first super-
ficial (0, 5, 15, and 30 cm) and the 3 deeper (60, 100, and 200 cm)
layers that were highly correlated, respectively.

We extracted climate data with a high spatial resolution (30
arcsec) using CHELSA v. 1.2 [28]. CHELSA is based on a quasi-
mechanistic statistical downscaling global reanalysis and global
circulation model that, in particular, reliably interpolates the
amount of precipitation using an orographic rainfall and wind
effect. The dataset consisted of 48 climatic, 19 bioclimatic, 4
drought- and 2 frost-related variables for the reference period
1979-2013 (Table 3 [35]). We extracted all modeled environmen-
tal values for each individually geo-referenced tree using the
“extract” function of the R package raster [29]. The surround-
ing conditions (i.e., adjacent pixels) of each tree were incorpo-
rated by the bilinear interpolation method when extracting the
data.

The local environmental contrasts varied among species and
population pairs, most of which exhibited variability concern-
ing elevation, temperature, precipitation, and water availabil-
ity. Other local contrasts were based on radiation, soil water
capacity, and topographic wetness index (among others). One
special case is P. nigra, a heliophilous pioneer species found
naturally in riverine areas. Given this specific habitat, local
contrasts were largely bound to the distance of the individ-
ual trees from the riverbed and thus, e.g., to groundwater ac-
cess or exposure to variation in the intensity and frequency of
floods.

The database has been checked for consistency at differ-
ent stages by various researchers between 2018 and 2020.
Raw data were submitted by all partners to the GnpIS mul-
tispecies integrative information system [36] using prefor-
matted Microsoft Excel templates. Data files were harmo-
nized, merged, and subsequently verified following several
steps:

1. Missing data and dubious entries were checked manually by
examining the original data files obtained from the partners
and by cross-checking cases with field books.

2. Descriptive statistics were calculated and plotted for all
variables including minima, maxima, means, and vari-
ances. Outliers were checked against original data records
and corrected when necessary.

3. Covariables were plotted determining whether relation-
ships were reasonable and following the most complete set
of similar relationships (Fig. 3).

The data presented are structured in 4 independent csv
files (GenTree_modelled_environmental_data.csv, Gen-
Tree_modelled_environmental_data_metadata.csv, Gen-
Tree_phenotypes_and_insitu_environmental_data.csv, and Gen-
Tree_phenotypes_and.insitu_environmental_data_metadata.csv)
that can be merged using the site identifier (m04.site.id) or tree
identifier (m06.tree.id). The same codes can be used to merge
additional data, namely, from the GenTree Dendroecological
Collection [16], the GenTree Leaf Trait Collection [17], and the
GenTree Genomic Collection (T. Pyhdjarvi personal communi-
cation). The first file contains the modeled environmental data,
the second its metadata, the third the individual phenotypic
traits and the in situ environmental data, and the fourth the
metadata of the latter.

The data underlying this article are available in the GigaDB
repository [31] under a CCO license. Excel versions of the data
are available from Figshare [32]. All the data are indexed in
Table 3.

BAAD: Biomass And Allometry Database; CHELSA: Climatolo-
gies at High Resolution for the Earth’s Land Surface Areas;
CI: competition index; DBH: diameter at breast height; GPS:
Global Positioning System; ISO: International Organization for
Standardization.
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Table 3: Environmental variable names, explanations, and specifications modeled for all 4,959 trees and 194 GenTree sites

Variable

Name

Explanation

GenTree Platform modeled environmental parameters

Sample
Country
countryspecies
Species
Population
latwgs84
lonwgs84
latetrs89
lonetrs89
tOlalt
t02slp
t03asp
t04vcu
tO5hcu
t06ddg
t07mpi
t08tpi
t09vrm
t10twi
tllsvf
t12sdir
t13sdif
tl4stot
awcl5
awc140
bio01
bio02
bio03
bio04
bio05
bio06
bio07
bio08
bio09
bio10
bioll
bio12
biol3
bio14
biol5
biol6
biol7
bio18
biol19
Gdd

Gsp

Shc
rh410
Fef

Nfd
prec01
prec02
prec03
prec04
prec05
prec06

Sample identification

Country code

Country and species code

Species code

Population identification

Latitude in WGS84

Longitude in WGS84

Latitude in ETRS89

Longitude in ETRS89

Altitude

Slope

Eastness

Profile curvature

Horizontal curvature

Downslope distance gradient
Morphometric protection index
Topographic position index

Vector ruggedness measure
Topographic wetness index
Sky-view factor

Potential direct solar radiation
Potential diffuse solar radiation
Potential total solar radiation
Available water capacity (0-30 cm)
Available water capacity (60-200 cm)
Yearly mean temperature

Mean diurnal range

Isothermality

Temperature seasonality

Max temperature of warmest month
Min temperature of coldest month
Temperature annual range

Mean temperature of wettest quarter
Mean temperature of driest quarter
Mean temperature of warmest quarter
Mean temperature of coldest quarter
Yearly precipitation sum
Precipitation of wettest month
Precipitation of driest month
Precipitation seasonality
Precipitation of wettest quarter
Precipitation of driest quarter
Precipitation of warmest quarter
Precipitation of coldest quarter
Growing degree days

Accumulated precipitation
Hydrothermic coefficient

Relative humidity

Frost change frequency

Number of frost days

Precipitation sum in January
Precipitation sum in February
Precipitation sum in March
Precipitation sum in April
Precipitation sum in May
Precipitation sum in June

Specification

Unit

None
None
None
None
None
Degree
Degree
Degree
Degree
m
Degree
Degree
Degree/m
Degree/m
Degree
None
None
None
None
None
kI m2
kf m2
kJ m2
%

%
°C/10
°C/10
°C/10
°C/10
°C/10
°C/10
°C/10
°C/10
°C/10
°C/10
°C/10
kgm~?
kg m~2
kg m~?
kg m~2
kgm~?
kg m~2
kg m~?
kg m~2
°C

kg m~2
(kg m~2/10)/°C
%
Number of events
Number of days
kg m~?
kg m~2
kg m~?
kg m~?
kg m~2
kg m~?

Resolution (m)

None
None
None
None
None
25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25
250
250
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
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Table 3: Continued

Variable

Name Explanation

prec07 Precipitation sum in July

prec08 Precipitation sum in August

prec09 Precipitation sum in September
precl0 Precipitation sum in October

precll Precipitation sum in November
precl12 Precipitation sum in December
tmeanO1 Mean temperature in January
tmean02 Mean temperature in February
tmean03 Mean temperature in March
tmean04 Mean temperature in April

tmean05 Mean temperature in May

tmean06 Mean temperature in June

tmean07 Mean temperature in July

tmean08 Mean temperature in August
tmean09 Mean temperature in September
tmean10 Mean temperature in October
tmeanll Mean temperature in November
tmean12 Mean temperature in December
tmin01 Minimum temperature in January
tmin02 Minimum temperature in February
tmin03 Minimum temperature in March
tmin04 Minimum temperature in April
tmin05 Minimum temperature in May
tmin06 Minimum temperature in June
tmin07 Minimum temperature in July
tmin08 Minimum temperature in August
tmin09 Minimum temperature in September
tminl10 Minimum temperature in October
tminll Minimum temperature in November
tminl2 Minimum temperature in December
tmax01 Maximum temperature in January
tmax02 Maximum temperature in February
tmax03 Maximum temperature in March
tmax04 Maximum temperature in April
tmax05 Maximum temperature in May
tmax06 Maximum temperature in June
tmax07 Maximum temperature in July
tmax08 Maximum temperature in August
tmax09 Maximum temperature in September
tmax10 Maximum temperature in October
tmax11 Maximum temperature in November
tmax12 Maximum temperature in December
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Specification
Resolution (m)

Unit

kg m~? 1,000
kg m~2 1,000
kgm~? 1,000
kg m2 1,000
kgm~? 1,000
kg m~2 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
°C/10 1,000
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