206 research outputs found

    Accumulation Pattern Of Total Nonstructural Carbohydrate In Strawberry Runner Plants And Its Influence On Plant Growth And Fruit Production

    Get PDF
    The pattern of total nonstructural carbohydrate (TNC) accumulation in strawberry (Fragaria ananassa Duch.) nursery runner plants, cv. ‘Camarosa’, was determined for three growing seasons. Plant growth and fruit production patterns were also evaluated. The experiments were carried out on plants propagated in high latitude (41°50' N) and high elevation (1292 m) nurseries in Siskiyou County, California. Plants were sampled beginning in late summer through early autumn and analyzed for dry mass (DM) and TNC. Plants from different digging dates were established in growth chambers (GC) at UC Davis or fruit evaluation plots in Irvine, California. In the nursery, TNC concentration in storage tissues increased steadily from the second week of September to the third week of October, and crown and root TNC concentration was positively correlated with the accumulation of chilling units (hours ≤7.2°C). The root TNC concentration consistently increased from 6 to 10% DM from mid-September to the first week of October. Transplant growth and fruiting pattern were affected by digging date. Overall, the roots were more sensitive to chilling in terms of TNC accumulation, than the crowns. Therefore, roots would be the appropriate organ for assessing TNC status and potential digging dates of strawberry nursery runner plants early in the fall.EEA FamailláFil: Kirschbaum, Daniel Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Larson, Kirk D. University of California Davis. Department of Plant Sciences; Estados UnidosFil: Weinbaum, Steven A. University of California Davis. Department of Plant Sciences; Estados UnidosFil: DeJong, Theodore M. University of California Davis. Department of Plant Sciences; Estados Unido

    Accumulation pattern of total nonstructural carbohydrate in strawberry runner plants and its influence on plant growth and fruit production

    Get PDF
    The pattern of total nonstructural carbohydrate (TNC) accumulation in strawberry (Fragaria ananassa Duch.) nursery runner plants, cv. eCamarosaf, was determined for three growing seasons. Plant growth and fruit production patterns were also evaluated. The experiments were carried out on plants propagated in high latitude (41‹50' N) and high elevation (1292 m) nurseries in Siskiyou County, California. Plants were sampled beginning in late summer through early autumn and analyzed for dry mass (DM) and TNC. Plants from different digging dates were established in growth chambers (GC) at UC Davis or fruit evaluation plots in Irvine, California. In the nursery, TNC concentration in storage tissues increased steadily from the second week of September to the third week of October, and crown and root TNC concentration was positively correlated with the accumulation of chilling units (hours .7.2‹C). The root TNC concentration consistently increased from 6 to 10% DM from mid-September to the first week of October. Transplant growth and fruiting pattern were affected by digging date. Overall, the roots were more sensitive to chilling in terms of TNC accumulation, than the crowns. Therefore, roots would be the appropriate organ for assessing TNC status and potential digging dates of strawberry nursery runner plants early in the fall.Key words: Transplant, carbohydrate, chilling, growth analysis

    Differential Response Of Early And Intermediate Flowering Strawberry Cultivars To Nursery Late-Season Nitrogen Applications And Digging Date

    Get PDF
    The response of ‘Ventana’, an early flowering cultivar, and ‘Camarosa’, an intermediate flowering cultivar, to nursery late-season nitrogen (N) applications and digging date were studied in strawberry (Fragaria x ananassa Duch). Two experiments were conducted. In the first experiment, runner plants dug on September 20 and October 11 from a high-latitude nursery in California, were established in growth chambers set at 25°/15ºC day/night temperature, 12-h photoperiod, and grown for 90 days. Compared to the first experiment, in the second experiment plants received extra N (foliar-applied) in the nursery in late summer, and runner plants were not grown in GC but in open field (Irvine, California). In the second experiment, runner plants were dug on Sept 20 and Oct 2. In both experiments, plants dug in September were exposed to ~100 chilling units (CU: hours ≤7.2°C) and plants dug in October were exposed to ~300 CU. As a result, October-dug plants had greater crown and root dry weight, and greater concentration of starch and total nonstructural carbohydrates (TNC) in leaves, crowns and roots, compared to September-dug plants. In control plants, from September to October, root TNC concentration increased in ‘Camarosa’ from ~6% to ~11%, and in ‘Ventana’ from ~14% to ~21%, and leaf N concentration ranged from 1.47 to 1.81% in ‘Camarosa’, and from 1.60 to 1.96% in ‘Ventana’. Late summer N applications increased plant N concentration and early-season yields. Late-summer nursery N applications reduced dead leaf biomass (DLB) and dead leaf area (DLA) in both cultivars, although ‘Ventana’ had lower DLB and DLA than ‘Camarosa’. ‘Ventana’ had a greater leaf number and flowered earlier, and had greater early fruit production than ‘Camarosa’. The genetic earliness of ‘Ventana’ would be correlated with the potential of the plant for accumulation of higher initial levels of leaf N and root TNC, and for having greater leaf longevity, compared to ‘Camarosa’.EEA FamailláFil: Kirschbaum, Daniel Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Larson, Kirk D. University of California Davis. Department of Plant Sciences; Estados UnidosFil: Weinbaum, Steven A. University of California Davis. Department of Plant Sciences; Estados UnidosFil: DeJong, Theodore M. University of California Davis. Department of Plant Sciences; Estados Unido

    Late-season nitrogen applications in high-latitude strawberry nurseries improve transplant production pattern in warm regions

    Get PDF
    The influence of late-season nitrogen (N) applications on the fruiting pattern of strawberry runner plants of ‘Camarosa’ was determined over three growing seasons. Experiments were carried out in high-latitude nurseries in northern California and fruit production trials were established in southern California. A total of 80 kg/ha of foliar nitrogen was delivered in three applications to the nursery in late summer. Late-season foliar nitrogen applications: (1) increased early yields (+22% on average) as well as the number of early marketable fruit, (2) did not affect total season yields, fruit size, appearance and firmness and (3) resulted in greater N concentration in leaves, crowns and roots. Runner plants with leaf N concentration within the sufficiency range (1.9 - 2.8% of dry mass) produced the highest early yields. Total nonstructural carbohydrate concentrations decreased in most of the N-treated plants. Apparently, nursery late-season foliar nitrogen applications enhance N mobilization to crown and root, stimulate plant activity during the period of flower differentiation after planting, accelerating flower development and contributing to the advancement of fruit production.EEA FamailláFil: Kirschbaum, Daniel Santiago. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillá; ArgentinaFil: Larson, Kirk D. University of California Davis. Department of Plant Sciences; Estados UnidosFil: Weinbaum, Steven A. University of California Davis. Department of Plant Sciences; Estados UnidosFil: DeJong, Theodore M. University of California Davis. Department of Plant Sciences; Estados Unido

    The Large and Small Scale Structures of Dust in the Star-Forming Perseus Molecular Cloud

    Full text link
    We present an analysis of ~3.5 square degrees of submillimetre continuum and extinction data of the Perseus molecular cloud. We identify 58 clumps in the submillimetre map and we identify 39 structures (`cores') and 11 associations of structures (`super cores') in the extinction map. The cumulative mass distributions of the submillimetre clumps and extinction cores have steep slopes (alpha ~ 2 and 1.5 - 2 respectively), steeper than the Salpeter IMF (alpha = 1.35), while the distribution of extinction super cores has a shallow slope (alpha ~ 1). Most of the submillimetre clumps are well fit by stable Bonnor-Ebert spheres with 10K < T < 19K and 5.5 < log_10(P_ext/k) < 6.0. The clumps are found only in the highest column density regions (A_V > 5 - 7 mag), although Bonnor-Ebert models suggest that we should have been able to detect them at lower column densities if they exist. These observations provide a stronger case for an extinction threshold than that found in analysis of less sensitive observations of the Ophiuchus molecular cloud. The relationship between submillimetre clumps and their parent extinction core has been analyzed. The submillimetre clumps tend to lie offset from the larger extinction peaks, suggesting the clumps formed via an external triggering event, consistent with previous observations.Comment: 38 pages, 12 figures, accepted by Astrophysical Journal slight changes to original due to a slight 3" error in the coordinates of the SCUBA ma

    The JCMT Gould Belt Survey: properties of star-forming filaments in Orion A North

    Get PDF
    We develop and apply a Hessian-based filament detection algorithm to submillimetre continuum observations of Orion A North. The resultant filament radial density profiles are fitted with beam-convolved line-of-sight Plummer-profiles using Markov chain Monte Carlo techniques. The posterior distribution of the radial decay parameter demonstrates that the majority of filaments exhibit p = 1.5–3, with a mode at p = 2.2, suggesting deviation from the Ostriker p = 4 isothermal, equilibrium, self-gravitating cylinder. The spatial distribution of young stellar objects relative to the high column density filaments is investigated, yielding a lower limit on the star-forming age of the integral-shaped filament ∼1.4 Myr. Additionally, inferred lifetimes of filaments are examined which suggest long-term filament accretion, varying rates of star formation, or both. Theoretical filament stability measures are determined with the aid of HARP C18O J = 3–2 observations and indicate that the majority of filaments are gravitationally subcritical, despite the presence of young protostars. The results from this investigation are consistent with the one-dimensional accretion flow filament model recently observed in numerical simulations

    Calculation of the Phase Behavior of Lipids

    Full text link
    The self-assembly of monoacyl lipids in solution is studied employing a model in which the lipid's hydrocarbon tail is described within the Rotational Isomeric State framework and is attached to a simple hydrophilic head. Mean-field theory is employed, and the necessary partition function of a single lipid is obtained via a partial enumeration over a large sample of molecular conformations. The influence of the lipid architecture on the transition between the lamellar and inverted-hexagonal phases is calculated, and qualitative agreement with experiment is found.Comment: to appear in Phys.Rev.

    Evolution of reproductive development in the volvocine algae

    Get PDF
    The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male–female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ–soma division of labor and male–female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator

    Get PDF
    Höhn S, Hallmann A. There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator. BMC Biology. 2011;9(1): 89.Background: Epithelial folding is a common morphogenetic process during the development of multicellular organisms. In metazoans, the biological and biomechanical processes that underlie such three-dimensional (3D) developmental events are usually complex and difficult to investigate. Spheroidal green algae of the genus Volvox are uniquely suited as model systems for studying the basic principles of epithelial folding. Volvox embryos begin life inside out and then must turn their spherical cell monolayer outside in to achieve their adult configuration; this process is called 'inversion.' There are two fundamentally different sequences of inversion processes in Volvocaceae: type A and type B. Type A inversion is well studied, but not much is known about type B inversion. How does the embryo of a typical type B inverter, V. globator, turn itself inside out? Results: In this study, we investigated the type B inversion of V. globator embryos and focused on the major movement patterns of the cellular monolayer, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. Isolated intact, sectioned and fragmented embryos were analyzed throughout the inversion process using light microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy techniques. We generated 3D models of the identified cell shapes, including the localizations of CBs. We show how concerted cell-shape changes and concerted changes in the position of cells relative to the CB system cause cell layer movements and turn the spherical cell monolayer inside out. The type B inversion of V. globator is compared to the type A inversion in V. carteri. Conclusions: Concerted, spatially and temporally coordinated changes in cellular shapes in conjunction with concerted migration of cells relative to the CB system are the causes of type B inversion in V. globator. Despite significant similarities between type A and type B inverters, differences exist in almost all details of the inversion process, suggesting analogous inversion processes that arose through parallel evolution. Based on our results and due to the cellular biomechanical implications of the involved tensile and compressive forces, we developed a global mechanistic scenario that predicts epithelial folding during embryonic inversion in V. globator
    corecore