73 research outputs found

    Harms of exercise training in patients with cancer undergoing systemic treatment: a systematic review and meta-analysis of published and unpublished controlled trials

    Get PDF
    © 2023 The Authors. Published by Elsevier. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1016/j.eclinm.2023.101937Background: Exercise is recommended for people with cancer. The aim of this study was to evaluate the harms of exercise in patients with cancer undergoing systemic treatment. Methods: This systematic review and meta-analysis included published and unpublished controlled trials comparing exercise interventions versus controls in adults with cancer scheduled to undergo systemic treatment. The primary outcomes were adverse events, health-care utilization, and treatment tolerability and response. Eleven electronic databases and trial registries were systematically searched with no date or language restrictions. The latest searches were performed on April 26, 2022. The risk of bias was judged using RoB2 and ROBINS-I, and the certainty of evidence for primary outcomes was assessed using GRADE. Data were statistically synthesised using pre-specified random-effect meta-analyses. The protocol for this study was registered in the PROESPERO database (ID: CRD42021266882). Findings: 129 controlled trials including 12,044 participants were eligible. Primary meta-analyses revealed evidence of a higher risk of some harms, including serious adverse events (risk ratio [95% CI]: 1.87 [1.47–2.39], I2 = 0%, n = 1722, k = 10), thromboses (risk ratio [95% CI]: 1.67 [1.11–2.51], I2 = 0%, n = 934, k = 6), and fractures (risk ratio [95% CI]: 3.07 [3.03–3.11], I2 = 0%, n = 203, k = 2) in intervention versus control. In contrast, we found evidence of a lower risk of fever (risk ratio [95% CI]: 0.69 [0.55–0.87], I2 = 0% n = 1109, k = 7) and a higher relative dose intensity of systemic treatment (difference in means [95% CI]: 1.50% [0.14–2.85], I2 = 0% n = 1110, k = 13) in intervention versus control. For all outcomes, we downgraded the certainty of evidence due to imprecision, risk of bias, and indirectness, resulting in very low certainty of evidence. Interpretation: The harms of exercise in patients with cancer undergoing systemic treatment are uncertain, and there is currently insufficient data on harms to make evidence-based risk-benefits assessments of the application of structured exercise in this population. Funding: There was no funding for this study.Published versio

    Identification of glucocorticoid-related molecular signature by whole blood methylome analysis

    Full text link
    Objective Cushing's syndrome represents a state of excessive glucocorticoids related to glucocorticoid treatments or to endogenous hypercortisolism. Cushing's syndrome is associated with high morbidity, with significant inter-individual variability. Likewise, adrenal insufficiency is a life-threatening condition of cortisol deprivation. Currently, hormone assays contribute to identify Cushing's syndrome or adrenal insufficiency. However, no biomarker directly quantifies the biological glucocorticoid action. The aim of this study was to identify such markers. Design We evaluated whole blood DNA methylome in 94 samples obtained from patients with different glucocorticoid states (Cushing's syndrome, eucortisolism, adrenal insufficiency). We used an independent cohort of 91 samples for validation. Methods Leukocyte DNA was obtained from whole blood samples. Methylome was determined using the Illumina methylation chip array (~850 000 CpG sites). Both unsupervised (principal component analysis) and supervised (Limma) methods were used to explore methylome profiles. A Lasso-penalized regression was used to select optimal discriminating features. Results Whole blood methylation profile was able to discriminate samples by their glucocorticoid status: glucocorticoid excess was associated with DNA hypomethylation, recovering within months after Cushing's syndrome correction. In Cushing's syndrome, an enrichment in hypomethylated CpG sites was observed in the region of FKBP5 gene locus. A methylation predictor of glucocorticoid excess was built on a training cohort and validated on two independent cohorts. Potential CpG sites associated with the risk for specific complications, such as glucocorticoid-related hypertension or osteoporosis, were identified, needing now to be confirmed on independent cohorts. Conclusions Whole blood DNA methylome is dynamically impacted by glucocorticoids. This biomarker could contribute to better assessment of glucocorticoid action beyond hormone assays

    Association of adrenal steroids with metabolomic profiles in patients with primary and endocrine hypertension

    Get PDF
    Introduction: Endocrine hypertension (EHT) due to pheochromocytoma/paraganglioma (PPGL), Cushing’s syndrome (CS), or primary aldosteronism (PA) is linked to a variety of metabolic alterations and comorbidities. Accordingly, patients with EHT and primary hypertension (PHT) are characterized by distinct metabolic profiles. However, it remains unclear whether the metabolomic differences relate solely to the disease-defining hormonal parameters. Therefore, our objective was to study the association of disease defining hormonal excess and concomitant adrenal steroids with metabolomic alterations in patients with EHT. Methods: Retrospective European multicenter study of 263 patients (mean age 49 years, 50% females; 58 PHT, 69 PPGL, 37 CS, 99 PA) in whom targeted metabolomic and adrenal steroid profiling was available. The association of 13 adrenal steroids with differences in 79 metabolites between PPGL, CS, PA and PHT was examined after correction for age, sex, BMI, and presence of diabetes mellitus. Results: After adjustment for BMI and diabetes mellitus significant association between adrenal steroids and metabolites – 18 in PPGL, 15 in CS, and 23 in PA – were revealed. In PPGL, the majority of metabolite associations were linked to catecholamine excess, whereas in PA, only one metabolite was associated with aldosterone. In contrast, cortisone (16 metabolites), cortisol (6 metabolites), and DHEA (8 metabolites) had the highest number of associated metabolites in PA. In CS, 18-hydroxycortisol significantly influenced 5 metabolites, cortisol affected 4, and cortisone, 11-deoxycortisol, and DHEA each were linked to 3 metabolites. Discussions: Our study indicates cortisol, cortisone, and catecholamine excess are significantly associated with metabolomic variances in EHT versus PHT patients. Notably, catecholamine excess is key to PPGL’s metabolomic changes, whereas in PA, other non-defining adrenal steroids mainly account for metabolomic differences. In CS, cortisol, alongside other non-defining adrenal hormones, contributes to these differences, suggesting that metabolic disorders and cardiovascular morbidity in these conditions could also be affected by various adrenal steroids.</p

    Association of adrenal steroids with metabolomic profiles in patients with primary and endocrine hypertension

    Get PDF
    Introduction: Endocrine hypertension (EHT) due to pheochromocytoma/paraganglioma (PPGL), Cushing’s syndrome (CS), or primary aldosteronism (PA) is linked to a variety of metabolic alterations and comorbidities. Accordingly, patients with EHT and primary hypertension (PHT) are characterized by distinct metabolic profiles. However, it remains unclear whether the metabolomic differences relate solely to the disease-defining hormonal parameters. Therefore, our objective was to study the association of disease defining hormonal excess and concomitant adrenal steroids with metabolomic alterations in patients with EHT. Methods: Retrospective European multicenter study of 263 patients (mean age 49 years, 50% females; 58 PHT, 69 PPGL, 37 CS, 99 PA) in whom targeted metabolomic and adrenal steroid profiling was available. The association of 13 adrenal steroids with differences in 79 metabolites between PPGL, CS, PA and PHT was examined after correction for age, sex, BMI, and presence of diabetes mellitus. Results: After adjustment for BMI and diabetes mellitus significant association between adrenal steroids and metabolites – 18 in PPGL, 15 in CS, and 23 in PA – were revealed. In PPGL, the majority of metabolite associations were linked to catecholamine excess, whereas in PA, only one metabolite was associated with aldosterone. In contrast, cortisone (16 metabolites), cortisol (6 metabolites), and DHEA (8 metabolites) had the highest number of associated metabolites in PA. In CS, 18-hydroxycortisol significantly influenced 5 metabolites, cortisol affected 4, and cortisone, 11-deoxycortisol, and DHEA each were linked to 3 metabolites. Discussions: Our study indicates cortisol, cortisone, and catecholamine excess are significantly associated with metabolomic variances in EHT versus PHT patients. Notably, catecholamine excess is key to PPGL’s metabolomic changes, whereas in PA, other non-defining adrenal steroids mainly account for metabolomic differences. In CS, cortisol, alongside other non-defining adrenal hormones, contributes to these differences, suggesting that metabolic disorders and cardiovascular morbidity in these conditions could also be affected by various adrenal steroids.</p

    Targeted metabolomics as a tool in discriminating endocrine from primary hypertension

    Get PDF
    Context Identification of patients with endocrine forms of hypertension (EHT) (primary hyperaldosteronism [PA], pheochromocytoma/paraganglioma [PPGL], and Cushing syndrome [CS]) provides the basis to implement individualized therapeutic strategies. Targeted metabolomics (TM) have revealed promising results in profiling cardiovascular diseases and endocrine conditions associated with hypertension. Objective Use TM to identify distinct metabolic patterns between primary hypertension (PHT) and EHT and test its discriminating ability. Methods Retrospective analyses of PHT and EHT patients from a European multicenter study (ENSAT-HT). TM was performed on stored blood samples using liquid chromatography mass spectrometry. To identify discriminating metabolites a “classical approach” (CA) (performing a series of univariate and multivariate analyses) and a “machine learning approach” (MLA) (using random forest) were used. The study included 282 adult patients (52% female; mean age 49 years) with proven PHT (n = 59) and EHT (n = 223 with 40 CS, 107 PA, and 76 PPGL), respectively. Results From 155 metabolites eligible for statistical analyses, 31 were identified discriminating between PHT and EHT using the CA and 27 using the MLA, of which 16 metabolites (C9, C16, C16:1, C18:1, C18:2, arginine, aspartate, glutamate, ornithine, spermidine, lysoPCaC16:0, lysoPCaC20:4, lysoPCaC24:0, PCaeC42:0, SM C18:1, SM C20:2) were found by both approaches. The receiver operating characteristic curve built on the top 15 metabolites from the CA provided an area under the curve (AUC) of 0.86, which was similar to the performance of the 15 metabolites from MLA (AUC 0.83). Conclusion TM identifies distinct metabolic pattern between PHT and EHT providing promising discriminating performance

    Comparison and Implementation of a Rigid and a Flexible Multibody Planetary Gearbox Model

    Get PDF
    We propose algorithms for developing (1) a rigid (constrained) and (2) a flexible planetary gearbox model. The two methods are compared against each other and advantages/disadvantages of each method are discussed. The rigid model (1) has gear tooth reaction forces expressed by Lagrange multipliers. The flexible approach (2) is being compared with the gear tooth forces from the rigid approach, first without damping and second the influence of damping is examined. Variable stiffness as a function of base circle arc length is implemented in the flexible approach such that it handles the realistic switch between one and two gear teeth in mesh. The final results are from modelling the planetary gearbox in a 500 kW wind turbine which we also described in Jørgensen et.al (2013)

    Whole blood methylome-derived features to discriminate endocrine hypertension

    Get PDF
    Background: Arterial hypertension represents a worldwide health burden and a major risk factor for cardiovascular morbidity and mortality. Hypertension can be primary (primary hypertension, PHT), or secondary to endocrine disorders (endocrine hypertension, EHT), such as Cushing's syndrome (CS), primary aldosteronism (PA), and pheochromocytoma/paraganglioma (PPGL). Diagnosis of EHT is currently based on hormone assays. Efficient detection remains challenging, but is crucial to properly orientate patients for diagnostic confirmation and specific treatment. More accurate biomarkers would help in the diagnostic pathway. We hypothesized that each type of endocrine hypertension could be associated with a specific blood DNA methylation signature, which could be used for disease discrimination. To identify such markers, we aimed at exploring the methylome profiles in a cohort of 255 patients with hypertension, either PHT (n = 42) or EHT (n = 213), and at identifying specific discriminating signatures using machine learning approaches. Results: Unsupervised classification of samples showed discrimination of PHT from EHT. CS patients clustered separately from all other patients, whereas PA and PPGL showed an overall overlap. Global methylation was decreased in the CS group compared to PHT. Supervised comparison with PHT identified differentially methylated CpG sites for each type of endocrine hypertension, showing a diffuse genomic location. Among the most differentially methylated genes, FKBP5 was identified in the CS group. Using four different machine learning methods—Lasso (Least Absolute Shrinkage and Selection Operator), Logistic Regression, Random Forest, and Support Vector Machine—predictive models for each type of endocrine hypertension were built on training cohorts (80% of samples for each hypertension type) and estimated on validation cohorts (20% of samples for each hypertension type). Balanced accuracies ranged from 0.55 to 0.74 for predicting EHT, 0.85 to 0.95 for predicting CS, 0.66 to 0.88 for predicting PA, and 0.70 to 0.83 for predicting PPGL. Conclusions: The blood DNA methylome can discriminate endocrine hypertension, with methylation signatures for each type of endocrine disorder

    Risk Factors for Congenital Cryptorchidism in a Prospective Birth Cohort Study

    Get PDF
    Background: Risk factors for congenital cryptorchidism were investigated in a prospective birth cohort study in Denmark and Finland from 1997 to 2001. Methodology and Principal Findings: In total, 2,496 boys were examined for cryptorchidism at birth (cryptorchid/healthy: 128/2,368) and three months old (33/2,215). Information on risk factors was obtained antenatally (questionnaire/interview) or at birth from birth records. Use of nicotine substitutes during pregnancy (n = 40) and infertility treatment by intrauterine insemination (n = 49) were associated with an increased risk for cryptorchidism, adjusted odds ratio (95 % confidence interval) (OR (95%CI)) 3.04 (95%CI 1.00–9.27) and 3.01 (95%CI 1.27–7.15), respectively. No association was seen for mothers (n = 79) who had infertility treatment in form of intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF) treatment (OR 0.71 95%CI 0.21–2.38). In total, 728 (29%) reported to have smoked during pregnancy, however, no increased risk among maternal smokers was found. Furthermore, we found statistically significant associations between cryptorchidism and low birth weight, prematurity, being small for gestational age, substantial vaginal bleeding, and breech presentation, which are in accordance with other studies. Conclusions and Significance: Our study revealed two novel risk factors for cryptorchidism: intrauterine insemination and the use of nicotine substitutes in pregnancy. This suggests that cryptorchidism may not only be associated to geneti
    corecore