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Whole blood methylome‑derived features 
to discriminate endocrine hypertension
Roberta Armignacco1*†, Parminder S. Reel2†, Smarti Reel2†, Anne Jouinot1,3†, Amandine Septier1, 
Cassandra Gaspar4, Karine Perlemoine1, Casper K. Larsen5, Lucas Bouys1, Leah Braun6, 
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Anne‑Paule Gimenez‑Roqueplo5,10, Aleksander Prejbisz11, Andrzej Januszewicz11, Piotr Dobrowolski11, 
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Abstract 

Background:  Arterial hypertension represents a worldwide health burden and a major risk factor for cardiovascu‑
lar morbidity and mortality. Hypertension can be primary (primary hypertension, PHT), or secondary to endocrine 
disorders (endocrine hypertension, EHT), such as Cushing’s syndrome (CS), primary aldosteronism (PA), and pheochro‑
mocytoma/paraganglioma (PPGL). Diagnosis of EHT is currently based on hormone assays. Efficient detection remains 
challenging, but is crucial to properly orientate patients for diagnostic confirmation and specific treatment. More 
accurate biomarkers would help in the diagnostic pathway. We hypothesized that each type of endocrine hyperten‑
sion could be associated with a specific blood DNA methylation signature, which could be used for disease dis‑
crimination. To identify such markers, we aimed at exploring the methylome profiles in a cohort of 255 patients with 
hypertension, either PHT (n = 42) or EHT (n = 213), and at identifying specific discriminating signatures using machine 
learning approaches.

Results:  Unsupervised classification of samples showed discrimination of PHT from EHT. CS patients clustered sepa‑
rately from all other patients, whereas PA and PPGL showed an overall overlap. Global methylation was decreased in 
the CS group compared to PHT. Supervised comparison with PHT identified differentially methylated CpG sites for 
each type of endocrine hypertension, showing a diffuse genomic location. Among the most differentially methylated 
genes, FKBP5 was identified in the CS group. Using four different machine learning methods—Lasso (Least Absolute 
Shrinkage and Selection Operator), Logistic Regression, Random Forest, and Support Vector Machine—predictive 
models for each type of endocrine hypertension were built on training cohorts (80% of samples for each hyperten‑
sion type) and estimated on validation cohorts (20% of samples for each hypertension type). Balanced accuracies 
ranged from 0.55 to 0.74 for predicting EHT, 0.85 to 0.95 for predicting CS, 0.66 to 0.88 for predicting PA, and 0.70 to 
0.83 for predicting PPGL.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

†Roberta Armignacco, Parminder S. Reel, Smarti Reel and Anne Jouinot 
contributed equally to this work.

*Correspondence:  roberta.armignacco@inserm.fr; guillaume.assie@aphp.fr

1 Université Paris Cité, CNRS, INSERM, Institut Cochin, F‑75014 Paris, France
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-022-01347-y&domain=pdf


Page 2 of 11Armignacco et al. Clinical Epigenetics          (2022) 14:142 

Background
Arterial hypertension affects over a billion people world-
wide, with an estimated overall prevalence in adults of 
around 30–45% [1, 2]. This is one of the major risk fac-
tors for multiple cardiovascular and renal disorders and 
represents one of the most preventable causes of morbid-
ity and mortality. Around 5 to 10% of arterial hyperten-
sion cases are estimated to have secondary causes, most 
commonly due to parenchymal renal disease, renovas-
cular hypertension, obstructive sleep apnea, or endo-
crine diseases, such as Cushing’s syndrome (CS), primary 
aldosteronism (PA), and pheochromocytoma/paragan-
glioma (PPGL) [3, 4]. Diagnostic screening for secondary 
hypertension is complex and expensive [5] and generally 
restricted to patients with clinical signs, including hyper-
tension in young adults, sudden worsening of blood 
pressure in normotensive subjects, and drug-resistant 
hypertension, among others [3, 4]. However, the preva-
lence of secondary causes of hypertension is often under-
estimated and many cases remain unrecognized [6–8]. 
Early detection of endocrine forms of hypertension is 
crucial to control high blood pressure and prevent hyper-
tension-mediated organ damage and related cardiovascu-
lar complications, as well as achieve effective long-term 
treatment [9]. Moreover, hormone excess may increase 
individual risk of other consequences beyond hyperten-
sion, particularly in the case of CS or PA [10–12].

Currently, the diagnosis of endocrine hypertension 
(EHT) relies on hormonal evaluations, with specific 
diagnostic algorithms for each type of endocrine disor-
der. Hormone assays present some limitations, includ-
ing (i) common borderline values, especially in mild 
forms of over-secretion, where the diagnosis may be 
missed or wrongly called; (ii) lack of direct estimation 
of the individual risk to hormone exposure, despite the 
important inter-individual variability of hormone excess 
consequences; (iii) recommendation for multiple hormo-
nal tests, with screening and confirmatory strategies still 
debated, and varying from one center to the other [13]. 
New biomarkers could potentially allow to directly meas-
ure tissue exposure to hormone excess, with the potential 
improvement of diagnostic accuracy and prediction of 
individual susceptibility to different consequences.

Circulating biomarkers in the blood have the advan-
tage of being non-invasive when utilized. Leukocyte 
DNA methylation is particularly convenient as a bio-
marker, being a chemically stable yet dynamic biological 

hallmark, with a key role in epigenetic regulation in both 
health and disease [14]. Recent epigenome-wide asso-
ciation studies exploring leukocyte DNA methylation 
in hypertensive patients versus normotensive controls 
identified different loci associated with blood pressure 
regulation [15–17]. However, it is not yet established 
whether blood methylation profiles could also discrimi-
nate patients with EHT from those with primary hyper-
tension (PHT). Indeed, hormone excess may impact 
peripheral tissues at the epigenetic level, measurable as 
hormone-specific methylome signatures. This hypothesis 
is supported by a recent work, in which we were able to 
identify a blood methylome signature of CS [18].

In the present study, we explored leukocyte meth-
ylation profiles in hypertensive patients. Specifically, we 
analyzed whole blood methylome signatures in patients 
with PHT or EHT related to CS, PA, or PPGL.

Results
Patients
Blood samples were collected from 255 patients. Patients 
had been diagnosed either with primary hypertension 
(PHT, n = 42), or endocrine forms of hypertension (EHT, 
n = 213), either related to the presence of CS (n = 57), 
PA (n = 101), or PPGL (n = 55). Each group, except PA, 
showed a predominance of female patients, and the mean 
age was lower in patients with EHT than in patients with 
PHT (p < 0.01; Table 1).

Whole blood DNA methylome profile in hypertension
Whole-genome blood DNA methylome was determined 
for the 255 samples, with 731,635 informative CpG sites 
in all samples. Unsupervised principal component anal-
ysis showed a distribution of samples with separation 
depending on the type of hypertension (Fig.  1a). The 
main components of variability were associated with the 
type of hypertension, but also white blood cell count var-
iation and, to a lower extent, with age and sex (Additional 
file 1: Fig. S1).

The mean methylation level of the most variable CpG 
sites among all samples (n = 48,452) was not significantly 
different between the different types of hypertension, 
except in the group of CS patients, where methylation 
was decreased (Fig. 1b).

Conclusions:  The blood DNA methylome can discriminate endocrine hypertension, with methylation signatures for 
each type of endocrine disorder.

Keywords:  Endocrine hypertension, Whole blood methylome, Circulating biomarker
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The methylome signature of endocrine hypertension
Comparing the 731,635 informative CpG sites of each 
type of EHT to PHT, differentially methylated CpG sites 
were identified in EHT (n = 123,288), CS (n = 197,897), 
PA (n = 114,988), and PPGL (n = 66,976) versus PHT, 
respectively (Additional file  2: Table  S1). Differen-
tially methylated CpG sites were distributed all over the 

genome (Fig.  2c–f), and the proportion of hypo- and 
hyper-methylated CpG sites was not strongly related to 
CpG genomic density (Fig. 2a), nor to CpG proximity to 
genes (Fig.  2b). Gene set enrichment analysis of genes 
associated with the differentially methylated CpG sites in 
the four comparisons revealed enrichment in pathways 
related to blood pressure regulation mechanisms and 
hypertension, including MAPK, Rap1, phospholipase D 
and calcium signaling pathways [19–23] (FDR < 0.001 in 
all comparisons; Additional file 3: Table S2).

Beyond the analysis of individual CpG sites, a specific 
analysis of differentially methylated genes was performed 
(Table  2 and Additional file  4: Table  S3), highlighting 
the implication of specific genes for each type of EHT 
(Fig.  2c–f). The most significantly differentially methyl-
ated genes were FKBP5 in CS and CD300LG in PA.

Prediction of endocrine hypertension
Four different machine learning methods—Lasso, 
Logistic Regression, Random Forest, Support Vec-
tor Machine—were used to build a prediction model 
for each type of endocrine hypertension on subsets of 
samples (training cohorts), and subsequently tested 
on remaining samples (validation cohorts). The pre-
diction performance was better for individual types of 
EHT (CS, PA and PPGL) than for predicting EHT as a 
whole. Indeed, balanced accuracy against PHT reached 
0.95 for CS using SVM, 0.88 for PA using Lasso, 0.83 
for PPGL using RF, and 0.74 for EHT using LR (Fig. 3a; 
selected CpG sites in Additional file 1: Table S4). Mis-
classified samples (false negatives and false positives) 
mostly showed a positioning on the global methyl-
ome space in regions of overlapping between different 
hypertension types (Additional file  1: Fig. S2). In the 
two comparisons with sample numbers imbalance (PA 
vs. PTH and EHT vs. PHT), down- and up-sampling 
were used to further explore prediction score, with no 

Table 1  Sex and age distribution in the different hypertension types

Sex and age distribution are provided for each type of hypertension, and compared to primary hypertension (PHT); ns not significant

*Chi-square test

**Student’s t-test

Diagnosis n Total Sex p value* Age p value**

n Female n Male Mean ± sd

PHT 42 25 (60%) 17 (40%) 55.5 ± 11.5

EHT 213 119 (60%) 94 (40%) ns 48.5 ± 11.6  < 0.01

EHT

CS 57 40 (70%) 17 (30%) ns 48.1 ± 11.7  < 0.01

PA 101 43 (43%) 58 (57%) ns 47.8 ± 9.4  < 0.01

PPGL 55 36 (65%) 19 (35%) ns 50.1 ± 14.8  < 0.05

Fig. 1  Global structure of blood DNA methylation profile in different 
hypertension types. a Sample projections based on the first two 
principle components (PC1, PC2) of unsupervised PCA performed 
on the whole dataset (n = 731,635 CpG sites, n = 255 samples). The 
center of each group is indicated by the larger white circles. b Boxplot 
of the most variable CpG sites (n = 48,452 with M-Value SD > 0.4) in 
the four hypertension types. #CS, PA and PPGL were aggregated into 
a single EHT type, with random sampling of 55 samples from each 
group. *Student’s t-test p value < 0.05
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major impact on performance (Additional file  1: Fig. 
S3). The selected sets of CpG sites were specific for 
each endocrine hypertension type (Fig. 3b). These spe-
cific CpG sites, except for just one CpG site in CS, were 
all present among the differentially methylated CpG 
sites selected for each type of endocrine hypertension 
(Additional file 2: Table S1).

Discussion
In this work, we were able to identify a blood methy-
lome signature discriminating different types of EHT 
-including CS, PA and PPGL- from PHT. These different 
conditions are currently diagnosed with specific hor-
mone measurements, representing the gold standard 
[9]. However, hormone assays are not always conclu-
sive, with accuracies far from perfect [24–26], and quite 
expensive. This leads to screening strategies that target 
hypertensive patients with the highest risk of endocrine 

Fig. 2  Characteristics of differentially methylated CpG sites in endocrine hypertension. a Distribution of differentially methylated CpG sites related 
to CpG genomic density. b Distribution of differentially methylated CpG sites related to genes structure. c–f Manhattan plots representing the 
genomic distribution of differentially methylated CpG sites for each type of endocrine hypertension, in the comparisons CS vs. PHT (c), PA vs. PHT 
(d), PPGL vs. PHT (e), EHT vs. PHT (f). The most differentially methylated genes (mean –log10(p value) > 11, Limma) are highlighted in black
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etiology [3, 4]. These probabilistic approaches could 
miss cases compared to a full screening of the entire 
hypertensive population [27]. Specific non-hormonal 
biomarkers could potentially help in  situations where 
(i) hormone levels are not applicable—for instance, 
exogenous glucocorticoid administration; (ii) hormone 
dosages are not informative, due to situations interfer-
ing with hormone assays [28]; (iii) hormone dosages 
are borderline, not providing a proper classification of 
patients. Some non-hormonal markers of endocrine 
hypertension have been proposed, including specifi-
cally targeted metabolomics [29], and miRNAs [30, 
31]. Blood methylation marks may also be suitable for 
direct measurement of hormone excess on peripheral 
tissues. Indeed, DNA methylation is dynamic but sta-
bly preserved [14] and could potentially reflect the indi-
vidual impact of hormone excess over time better than 
hormonal evaluation, that need to be standardized for 
time, feeding-status, salt and fluid intake, and co-medi-
cation, among others.

Beyond the specific benefits for diagnosis, massive 
molecular screenings in common diseases like hyper-
tension are expected to improve personalized medicine, 

through the identification of features predicting response 
to treatment, or specific complications. Addressing these 
aims will require specific study designs, focused on fol-
low-up. For these up-coming studies, robustness and sta-
tistical power will improve by restricting the number of 
candidate features to be tested. This prior feature selec-
tion will be helped by this work and others, providing 
lists of CpG sites associated with each type of hyperten-
sion or with each type of hypertensive treatment [32].

Of note, the methylome signatures identified here are 
impacted by white blood cell count. Indeed, neutrophils 
increase and lymphocytes decrease in case of CS and, 
to a lesser extent, of PA [33–36]. However, we showed 
that white blood cell count was contributing to a limited 
part of methylome variability. To consider this effect, the 
methylome signatures provided here were adjusted for 
white blood cell count. The proportion of neutrophils 
was used as a unique proxy for this adjustment, given the 
high correlation with proportions of lymphocytes and 
lymphocyte subtypes.

Here, we identified blood DNA methylation loci associ-
ated with EHT. The blood DNA methylome profile asso-
ciated with the different types of hormonal excess was 
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also explored, with the identification of genes differen-
tially methylated, such as FKBP5 in CS and CD300LG in 
PA. FKBP5 encodes a co-chaperone regulating the gluco-
corticoid receptor activity [37], and its increased expres-
sion and decreased methylation in blood have already 
been described in CS [18, 38]. Moreover, stress-induced 
epigenetic up-regulation of FKBP5 has been associated 
with an increased risk of cardiovascular events [39]. 
CD300LG encodes a vascular endothelial cell adhesion 
molecule, which is implicated in leukocyte binding and 
transmigration, and whose expression seems to be dif-
ferently influenced by the local environment in different 
tissues [40]. Aldosterone is known to induce endothelial 
dysfunction [41] and to promote a pro-inflammatory 
phenotype, with vascular infiltration of monocytes, mac-
rophages, and lymphocytes, as demonstrated in both 
animal models of hypertension [42, 43] and human vas-
cular endothelial cells [44]. Whether CD300LG possi-
bly contributes to the effect of aldosterone on vascular 
endothelium and lymphocyte migration, and  whether 
this association represents a specific trait of aldosterone-
induced hypertension, remains to be established. One 
study explored CD300LG variants in a mouse model of 
hypertension, but with uncertain conclusions [45]. For a 
majority of other genes, the biological relevance in endo-
crine hypertension remains to be explored, including the 
impact of DNA methylation of gene expression.

The hypothesis of a common blood methylome sig-
nature of EHT was also addressed. When we compared 
CS-, PA- and PPGL-related signatures, a limited num-
ber of methylation marks were shared, suggesting the 
prominence of individual endocrine hypertension signa-
tures over a common signature of EHT. However, sample 
projections based on the variability of methylation levels 
showed overlap between PA and PPGL, and a tendency of 
CS to cluster separately. Indeed, secondary aldosteronism 
is common in PPGL [46] and could in part explain this 
similarity with PA. To which extent an endocrine-related 
molecular signature of hypertension shared between CS, 
PA and PPGL, but distinct from PHT, is induced remains 
to be determined. By directly comparing EHT as a whole 
to PHT, we provide here a set of methylome marks, 
which may facilitate the identification of such molecular 
signatures.

Whether these methylation marks better reflect the 
risk of complications related to hormone excess also 
remains to be elucidated. Of note, the methylation sig-
natures identified here were based on whole methylome 
analysis. Routine use of such a tool would be limited by 
cost and complexity. Reliable biomarkers should allow 
the prediction of a clinical endpoint of interest more 
easily, at a lower cost and over a shorter time span than 
the direct measurement of the clinical end point [47]. 

For methylation marks, this would imply a technology 
transfer to targeted measurements, such as pyrose-
quencing, methylation specific-MLPA, methylation 
specific-high resolution melting analysis, or nanopore 
sequencing [48, 49]. Setup and validation of suitable 
targeted assays have to be performed for the identified 
methylome marks of EHT.

A potential interest of selected methylome marks 
could be the integration in a targeted multi-omic chip 
for the diagnosis of endocrine hypertension (ENSAT-
HT project; http://​www.​ensat-​ht.​eu). Whether these 
methylation marks could positively impact the predic-
tion of a multi-modal classifier remains to be deter-
mined, especially for sensitive detection of the rarest 
forms of endocrine hypertension, namely CS and PPGL.

This work aimed to develop machine learning models 
with methylome data to predict endocrine hypertension. 
This approach might be seen as too simple regarding the 
pathophysiological complexity of these conditions, and 
the extensive and complex diagnosis workup currently 
needed to call these conditions. However, machine 
learning could help in leading a step forward toward 
a robust and accurate screening tool and could pro-
vide a unique opportunity to understand the complex 
relationships within an omic dataset and a complex 
phenotype. On the other side, this data-driven strat-
egy may be impacted by biases, including recruitment 
biases—in expert centers and optimal conditions-, and 
representation biases—considering the rare prevalence 
of CS or PPGL compared to the  other types of hyper-
tension. This latter risk is mitigated here  by the study 
design splitting samples into independent training and 
validation cohorts. Finally, the heterogeneity of sample 
sizes for the different types of endocrine hypertension 
may impact the machine learning process. However, 
the group of EHT was balanced in terms of endocrine 
hypertension types when analyzed as a whole, and opti-
mized strategies were used for unbalanced comparisons, 
including balanced accuracy measurement, or down- 
and up-sampling of the training cohorts.

Conclusions
Endocrine hypertension can be identified by blood 
DNA methylation markers, with specific methylation 
signatures for each type of endocrine disorder.

Methods
Patients and samples
A total of 255 blood samples were collected in eight dif-
ferent centers, as part of the European ENSAT-HT study 
(http://​www.​ensat-​ht.​eu). The cohort included patients 
with PHT (n = 42) and patients with different types of 

http://www.ensat-ht.eu
http://www.ensat-ht.eu
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EHT, namely CS (n = 57), PA (n = 101), or PPGL (n = 55) 
(Additional file  5: Table  S5). The diagnosis was made 
according to the current guidelines for screening and 
management of each specific disease [4, 50–52]. Diag-
nosis of PHT also required the exclusion of endocrine 
hypertension and other secondary causes (renal disease, 
pharmacological cause and obstructive sleep apnea syn-
drome) as well as the exclusion of patients with low-renin 
hypertension. Patients with uncertain diagnosis, those 
with pregnancy, severe comorbidities (including heart 
failure, chronic kidney disease, active malignancy) were 
also excluded.

Whole‑genome DNA methylation measurement
Leukocyte DNA was extracted from EDTA blood sam-
ples, using the DNA Isolation kit for Mammalian Blood 
(Roche, Basil, Switzerland). DNA quality was assessed 
on a Genomic DNA ScreenTape system (Agilent, Santa 
Clara, CA, US) and quantified using a Qubit 3.0 Fluo-
rometer (Thermofisher, Waltham, MA, US). DNA was 
treated by bisulfite and then hybridized to the Infinium 
MethylationEPIC BeadChip (Illumina, San Diego, CA, 
US; ~ 865,000 sites), starting from 500  ng of DNA. All 
experiments were performed following the manufac-
turer’s instructions at the P3S Post-Genomic Platform of 
Sorbonne University (Paris, France).

Bioinformatics and statistics
All samples passed the quality controls provided by the 
Genome Studio software (v. 2011.1; Illumina). Data were 
exported in Intensity Data (IDAT) format and then pro-
cessed using the minfi package (v. 1.32.0) [53] in the R 
software environment (v. 3.6.3) (https://​cran.r-​proje​
ct.​org/). An additional quality control of samples was 
performed based on probe detection quality, confirm-
ing the good quality of each sample (mean detection p 
value < 0.05).

Data were normalized using the stratified quantile nor-
malization procedure implemented in the “preprocess-
Quantile” minfi function [54] and the methylation score 
for each CpG probe was extracted as a β-value. Then, the 
ChAMP package (v. 2.16.1) was used to filter the probes 
[55]. A total of 731,635 CpG sites passed the following 
criteria: detection p value < 0.01, presence of the targeted 
CpG site, absence of frequent SNPs in the probe, single 
hybridization hit, autosomal target. Of note, filtering the 
probes before normalization versus after normalization 
did not significantly impact the values (data not shown).

The significant components of variation in the dataset 
were assessed using the singular value decomposition 
method (SVD) for methylation data [56], and a detected 

batch effect (Slide) was corrected using the “ComBat” 
method [57], as implemented in the ChAMP package.

White blood cell count of subpopulations (neutrophils, 
lymphocytes B, lymphocytes T4, lymphocytes T8, lym-
phocytes NK, monocytes) were estimated by the refer-
ence-based “RefbaseEWAS” method [58] implemented in 
the ChAMP package (Additional file  6: Table  S6). Since 
neutrophils were the most represented cell type in all 
samples, and since the proportions of neutrophils and 
lymphocytes were anti-correlated (Pearson’s r = −  0.96; 
Additional file  1: Fig. S1c, d), the estimated proportion 
of neutrophils was chosen as the unique proxy reflecting 
variations in white blood cell count.

M-values, used for statistical analysis, were calculated 
from β-values (log2 ratio of the intensities of methyl-
ated vs. unmethylated probes) using the lumi package (v. 
2.36.0) [59].

The global data structure was assessed on β-values by 
principal component analysis (PCA), using all the CpG 
probes. The most variable CpG probes were selected 
based on their Standard Deviation (SD cutoff: 0.4, 
n = 48,452 probes) among all samples. Differentially 
methylated CpG sites were identified using the Limma 
package (v. 3.40.6) [60] for each of the following compar-
ison: EHT vs. PHT, CS vs. PHT, PA vs. PHT, PPGL vs. 
PHT. For the EHT vs. PHT comparison, the EHT group 
was obtained by a random sampling of CS, PA and PPGL 
(n = 55 samples for each type of endocrine hyperten-
sion), to avoid imbalance between the endocrine hyper-
tension types. The estimated neutrophil count and age 
were included as covariates and CpG sites were selected 
based on an adjusted p value < 0.05 (Benjamin-Hochberg 
correction procedure; Additional file  2: Table  S1). Gene 
set enrichment analysis of genes associated with differ-
entially methylated CpG sites was performed using the 
“gometh” method (KEGG chosen as collection of path-
ways to test) implemented in the missmethyl package (v. 
1.18.0) [61], adjusting for the number of CpG sites associ-
ated to each gene [62] (Additional file  3: Table  S2). For 
each endocrine hypertension type, differentially meth-
ylated genes were selected when they presented at least 
three differentially methylated CpG sites in each com-
parison and a −  log10(p value) > 5 (Additional file  4: 
Table S3).

For predicting endocrine hypertension, the same 
four comparisons described above were considered for 
supervised learning (CS vs. PHT, PA vs. PHT, PPGL vs. 
PHT, and EHT vs. PHT). For each comparison, train-
ing (80%) and validation (20%) samples were randomly 
selected by maintaining the initial proportion of samples 
in each hypertension type in each comparison (Addi-
tional file  1: Table  S7). Starting from the most variable 
CpG sites previously selected (n = 48,452 probes with 

https://cran.r-project.org/
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M-value SD > 0.4), the most discriminating CpG sites for 
each comparison (n = 200 for CS vs. PHT, n = 141 for 
PA vs. PHT, n = 70 for PPGL vs. PHT, and n = 135 for 
EHT vs. PHT) were pre-selected from the training sets 
using the boruta package (v. 0.3) [63] (Additional file  1: 
Table  S8). For each comparison, four different classi-
fier methods were then used: (i) penalized Lasso (Least 
Absolute Shrinkage and Selection Operator) regression 
with tenfold cross-validation, using the glmnet pack-
age (v. 4.0–2) [64]; (ii) Support Vector Machine (SVM) 
[65]; iii) Random Forest (RF) [66]; iv) Logistic Regression 
(LR) [67] with Fast Correlation-Based Filter (FCBF) [68] 
using the orange toolbox (v. 3.30.1) [69] (Additional file 1: 
Table S9). The trained models were tested on the valida-
tion sets for each comparison, and the prediction perfor-
mance was evaluated using balanced accuracy, sensitivity, 
specificity, F1, Kappa, and AUC scores. The model train-
ing was further evaluated using up-sampling and down-
sampling (70).

Group comparisons were performed using Student’s t 
test for variables normally distributed, or chi-square test 
for binary categorical variables. All tests were computed 
in the R software environment.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13148-​022-​01347-y.

Additional file 1: Fig. S1. Components of variation in the whole methy‑
lome dataset. a) Scree plot representing the percentage of explained 
variability by the first five principal components of PCA performed on the 
whole dataset (n=731,635 CpG sites, n=255 samples). b) Singular value 
decomposition (SVD) plot assessing the correlation between the first five 
significant components of variation in the dataset and other biologi‑
cal factors of interest (Hypertension type –PHT, CS, PA, PPGL-, age, sex, 
cell composition–neutrophils used as the unique proxy). c) Correlation 
between the proportion of neutrophils and of lymphocytes. d) Correlation 
plot between the proportion of neutrophils and of the other different cell 
subtypes. Fig. S2. Misclassified sample positioning in the global structure 
of blood DNA methylation. Samples with discrepant methylome predic‑
tion and hormonal status are indicated by the white squares. Fig. S3. 
Heatmap of prediction scores in validation cohorts for primary aldoster‑
onism (PA) and endocrine hypertension (EHT) versus primary hyperten‑
sion (PHT), obtained with different machine learning approaches, after 
up-sampling and down-sampling the training cohort. RF random forests, 
SVM support vector machine; LR logistic regression; Lasso Least Absolute 
Shrinkage and Selection Operator. Table S4. Top performing methylome 
features. List of CpG sites selected for predicting each type of endocrine 
hypertension, based on the best performing method for each compari‑
son. Table S7. Training/Validation split of samples. Table S8. Parameters 
chosen for Boruta package. For details, see https://​github.​com/​scikit-​learn-​
contr​ib/​boruta_​py. Table S9. Parameters chosen for different machine 
learning models for classification task.

Additional file 2: Table S1. Differentially methylated CpG sites in endo‑
crine hypertension.

Additional file 3: Table S2. Enriched signaling pathways in endocrine 
hypertension.

Additional file 4: Table S3. Significant differentially methylated genes in 
endocrine hypertension.

Additional file 5: Table S5. Sample characteristics.

Additional file 6: Table S6. Methylome-based estimation of blood cell 
composition.
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