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Abstract 

Context:  Identification of patients with endocrine forms of hypertension (EHT) (primary 
hyperaldosteronism [PA], pheochromocytoma/paraganglioma [PPGL], and Cushing 
syndrome [CS]) provides the basis to implement individualized therapeutic strategies. 
Targeted metabolomics (TM) have revealed promising results in profiling cardiovascular 
diseases and endocrine conditions associated with hypertension.
Objective:  Use TM to identify distinct metabolic patterns between primary hypertension 
(PHT) and EHT and test its discriminating ability.
Methods:  Retrospective analyses of PHT and EHT patients from a European 
multicenter study (ENSAT-HT). TM was performed on stored blood samples using liquid 
chromatography mass spectrometry. To identify discriminating metabolites a “classical 
approach” (CA) (performing a series of univariate and multivariate analyses) and a 
“machine learning approach” (MLA) (using random forest) were used.
 The study included 282 adult patients (52% female; mean age 49 years) with proven PHT 
(n = 59) and EHT (n = 223 with 40 CS, 107 PA, and 76 PPGL), respectively.
Results:  From 155 metabolites eligible for statistical analyses, 31 were identified 
discriminating between PHT and EHT using the CA and 27 using the MLA, of which 
16 metabolites (C9, C16, C16:1, C18:1, C18:2, arginine, aspartate, glutamate, ornithine, 
spermidine, lysoPCaC16:0, lysoPCaC20:4, lysoPCaC24:0, PCaeC42:0, SM C18:1, SM 
C20:2) were found by both approaches. The receiver operating characteristic curve built 
on the top 15 metabolites from the CA provided an area under the curve (AUC) of 0.86, 
which was similar to the performance of the 15 metabolites from MLA (AUC 0.83).
Conclusion: TM identifies distinct metabolic pattern between PHT and EHT providing 
promising discriminating performance.

Key Words: targeted metabolomics, arterial hypertension, screening, Cushing syndrome, primary aldosteronism, 
pheochromocytoma

Arterial hypertension can be regarded as a global epidemic 
with an estimated worldwide prevalence varying from 25% 
to 50%, according to the region, population age, and def-
inition criteria used (1-4). Being one of the major cardio-
vascular risk factors, adequate management and control 
are relevant to reduce cardiovascular complications and 
related deaths. However, even though disease awareness 
has risen and distinct treatment options exist, the global 

control rate of arterial hypertension is still not satisfactory 
(5-7). To improve this situation, individualized approaches 
are required to target therapeutic strategies and to identify 
potential curative forms of hypertension to avoid the neces-
sity of a lifetime treatment.

Among secondary forms of hypertension, those caused 
by hormonal diseases are among the most challenging to 
diagnose and require specific expertise. The prevalence 
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of endocrine forms of hypertension (EHT), with a focus 
on primary hyperaldosteronism (PA), hormonally active 
pheochromocytoma/paraganglioma (PPGL), and Cushing syn-
drome (CS), is difficult to estimate. The most common form of 
EHT is PA, with prevalence varying between 3.2% and 21.9% 
of screened populations while the other causes (PPGL, CS) are 
rarer with prevalence <1% (8-11). Even though the combined 
prevalence indicates a relatively common condition, screening 
for EHT is not routinely performed in primary care. As exem-
plified by PA, EHT remains largely unrecognized, even though 
the timely diagnosis and treatment have been proven to be 
cost-effective and of benefit for patients (12, 13).

In addition to the lack of awareness for EHT, another 
reason that hampers the implementation of widespread 
screening approaches is based on the lack of resources. 
Considering the current recommendations, 50% of patients 
with arterial hypertension would be eligible for screening 
(14, 15), a number of patients that widely exceeds the 
available number of experts in this field. Therefore, it is im-
portant to focus on new strategies of preselecting patients 
for further referral to experts, for example by developing 
new prescreening tools and methods.

In the current study, we aimed to investigate the poten-
tial use of targeted metabolomics in discriminating primary 
hypertension (PHT) from EHT. Metabolomic profiling is a 
relatively new strategy for the parallel and high-throughput 
identification and quantification of dozens to hundreds of 
low molecular weight molecules (metabolites). By defin-
ition, a targeted metabolomics approach is restricted to 
a lower number of previously identified metabolites with 
known chemical structures (16). Advantages of targeted 
metabolomics include the better interlaboratory reproduci-
bility of assays and, thus, the potential swift application in 
diagnostic algorithms (17). In fact, targeted metabolomics 
have been successfully used to investigate numerous dis-
orders, and have provided promising results in profiling 
distinct cardiovascular diseases (18-24), as well as endo-
crine conditions associated with secondary hypertension 
including CS and PPGL (25, 26). Therefore, we hypothesize 
that metabolite profiles of PHT and EHT might be useful 
tools in discriminating the 2 clinical entities and help in 
preselecting patients for further analysis.

Materials and Methods

Patient selection

Patient data and suitable plasma specimens following over-
night fasting were available from patients from 11 centers 
of the ENSAT-HT consortium (http://www.ensat-ht.eu). 
All centers followed a standardized operating procedure 
for blood withdrawal usage of heparinized (lithium) tubes 
and plasma storing at –80°C prior shipment and analysis. 

Patients aged 18 to 75  years were included if diagnosed 
with PHT or EHT, in specific PA (including aldosterone-
producing adenoma and bilateral adrenal hyperplasia), 
hormonally active PPGL, and CS (adrenal and pituitary). 
The diagnosis (PHT, PA, PPGL) was made according to the 
current guidelines for screening and management of the 
specific diseases (14, 15, 27-29). The diagnosis of PHT also 
required the exclusion of EHT and other secondary causes 
(renal disease, pharmacological cause, and obstructive sleep 
apnea syndrome) as well as the exclusion of patients with 
low-renin hypertension. Patients with unclear diagnosis, 
pregnancy, severe comorbidities (eg, heart failure, chronic 
kidney disease, active malignancy) were also excluded from 
the study. All patients provided written consent to partici-
pate in the study according to the protocol approved by the 
ethics committee of each participating center.

Targeted metabolomics

The targeted metabolomics approach was based on liquid 
chromatography-electrospray ionization-tandem mass 
spectrometry (LC-ESI-MS/MS) and flow injection analysis–
electrospray ionization–tandem mass spectrometry (FIA-
ESI-MS/MS) measurements by using the AbsoluteIDQTM 
p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, 
Austria). The assay allows simultaneous quantification of 
188 metabolites in 10 µL of plasma. Details on accessible 
metabolites are given elsewhere (Table 1 (30)). The assay 
procedures of the AbsoluteIDQTM p180 Kit, as well as the 
metabolite nomenclature, have been described in detail pre-
viously (31, 32). The method of AbsoluteIDQTM p180 Kit 
has been proven to conform to the European Medicines 
Agency (EMEA) guideline “Guideline on bioanalytical 
method validation” (July 21, 2011)  (33), which implies 
proof of reproducibility within a given error range. Sample 
handling was performed by a Hamilton Microlab STAR™ 
robot (Hamilton Bonaduz AG, Bonaduz, Switzerland) 
and an Ultravap nitrogen evaporator (Porvair Sciences, 
Leatherhead, UK), and standard laboratory equipment. 
Mass spectrometric analyses were done on an API 4000 
triple quadrupole system (Sciex Deutschland GmbH, 
Darmstadt, Germany) equipped with a 1200 Series HPLC 
(Agilent Technologies Deutschland GmbH, Böblingen, 
Germany) and an HTC PAL autosampler (CTC Analytics, 
Zwingen, Switzerland) controlled by Analyst 1.6.2 soft-
ware. Data evaluation for quantification of metabolite 
concentrations and quality assessment was performed with 
the MultiQuant 3.0.1 (Sciex) and the MetIDQ™ software 
package. Metabolite concentrations were calculated using 
internal standards and reported in µM. We included all me-
tabolite measurements with peaks above the limit of detec-
tion, defined as 3 times the values of the 0 samples, as well 
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as those below this threshold if the metabolite peak concen-
tration was clearly detectable visually by the technician. To 
ensure the comparability of received data between batches, 
each metabolite value was normalized by measurement of 5 
aliquots of a pooled reference plasma (RP) with each batch 
as previously described (31, 32).

Data analysis

Metabolite data selection, missing data estimation, outlier 
detection
Metabolites for which measurement values were valid in 
less than 3 of 5 RP were excluded from normalization and 
further statistical analysis. We further excluded metabol-
ites for which the coefficient of variance of RP was >25% 
within and between batches (exceptions included 8 metab-
olites for which only the variance between batches, but not 
within, were only slightly above the predetermined cutoff 
prior normalization) and those metabolites for which 
values were not detectable in >40% of samples. From 188 
metabolites, 155 passed these selection criteria. In addition 
to the 155 eligible metabolites, 18 predefined metabolite 
sums and ratios were eligible for further analyses. The com-
plete list of metabolites is provided in (30).

The missing values of the metabolites with <40% of un-
detectable data were estimated using the k-nearest neighbors 
(KNN) method (34), considering each subgroup of clinical 
conditions separately. Using the heatmap analysis method 
we identified potential outliers among the studied patients, 
and those patients were excluded from the statistical ana-
lysis. The missing data estimation and outlier detection were 
performed using the MetaboAnalyst platform (35).

Patient characteristics
For baseline characteristics, a comparison was performed 
with the Pearson chi-squared test for categorical variables 
and the t-test for normally and Mann–Whitney U test and 
Kruskal–Wallis test for non-normally distributed numer-
ical variables, according to the Kolomogorov–Smirnov 
and Shapiro–Wilk tests (age in the PPGL subgroup was 
non-normally distributed). The homogeneity of variances 
of the metabolites between analyzed groups was tested 
using Levene’s test. Analyses were performed using SPSS® 
Statistics v25.0 (IBM).

Metabolite differences between groups and their 
discrimination ability
We followed 2 separate approaches to identify relevant me-
tabolites discriminating the different groups of patients ac-
cording to their clinical diagnosis and tested their ability 
to predict EHT (Fig. 1). These were phrased as the “clas-
sical approach” (CA) and the “machine-learning approach” 

(MLA). By separately performing distinct techniques we 
aim to evaluate the best prominent discriminating features.

Classical approach 
In a first step, we investigated differences between PHT and 
each subtype of EHT (CS, PA, PPGL) separately and in a 
second step between PHT and EHT as a common group. We 
arbitrarily defined “metabolites of interest” as those metabol-
ites, which were found to be significantly different in at least 2 
of the applied statistical analyses as described previously (26). 
Prior to the analyses, metabolites values were transformed 
using the generalized logarithm method (36). To test the dif-
ference between groups we performed a series of univariate 
(Wilcoxon rank-sum test) and multivariate (partial least 
square discriminant analysis [PLSDA] and orthogonal [ortho] 
PLSDA, significant analysis of microarray/metabolites, em-
pirical Bayesian analysis of microarray/metabolites) analyses, 
using the MetaboAnalyst platform (35). The metabolite dif-
ference was defined as statistically significant if P ≤ .05 after 
correction for multiple testing, according to the method spe-
cific for the test (ie, false discovery rate method for Wilcoxon 
rank-sum test and empirical Bayesian analysis of microarray/
metabolites and q-value for significant analysis of microarray/
metabolites). The results of PLSDA and orthoPLSDA were 
only considered if having good prediction results after in-
ternal model validation (10-fold cross-validation for PLSDA 
and permutation for orthoPLSDA); in that case, the significant 
metabolites were selected according to the variable import-
ance in projection score for PLSDA and S-plot (in particular 
covariance value) for orthoPLS-DA after visual interpretation 
of the plot. We performed all these analyses considering all 
patients, as well as considering separately male and female pa-
tients and patients with age <50 and ≥50 years, due to the 
known difference of studied metabolites between sexes and 
age groups (37, 38). Considering the unequal distribution 
of the patients according to sex and age within the different 
groups, we subsequently performed a regression analysis for 
each identified “metabolite of interest” including sex (female 
versus male) and age (<50 years versus ≥50 years).

In addition, we performed the same analysis approach 
separately for selected metabolite ratios and metab-
olite sums as provided by the MetIDQ™ RatioExplorer. 
(BIOCRATES Life Sciences®).

To test the ability to predict EHT, we selected the common 
“metabolites of interest” and “metabolite ratios of interest”, 
which were identified in the comparison of CS, PA, and 
PPGL from PHT, respectively (panel 1), as well as the “me-
tabolites/metabolite ratios of interest” identified from the 
EHT–PHT comparison (panel 2). For the latter, we selected 
the top 15 metabolites, according to the strength of their 
relation to the clinical entity from the regression analysis 
(see above). Using the selected metabolites we performed 

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/106/4/1111/6056647 by guest on 12 April 2021



The Journal of Clinical Endocrinology & Metabolism, 2021, Vol. 106, No. 4� 1115

an additional binomial logistic regression analysis. For both 
panels, probabilities for the presence of EHT were calculated 
for each patient and the discriminating performance of both 
panel was evaluated by building a receiver operating charac-
teristic (ROC) curve (39). The analysis was performed using 
the SPSS® Statistics v25.0 software.

Machine learning approach
The metabolites and metabolite ratios datasets were used 
separately for classification of different disease combin-
ations, namely PA-PHT, PPGL-PHT, CS-PHT, and EHT-
PHT. A  feature selection method, Information Gain (40), 
was used to identify the most significant features for a given 
phenotypic classification. It is an entropy-based filter method 
which ranks the features with high information in decreasing 
order (in the context of a target variable). The top features 
were empirically selected and employed for supervised model 
training. The same process was repeated for the metabolite 
ratios dataset. The feature selection and classification were 
performed for distinct subgroups such as using all samples, 
only male samples, only female samples, patient age ≥50 vs 
<50 years age samples to find the most discriminating me-
tabolites and metabolite ratios (see above).

A random forest classifier was used for classification 
(41). The algorithm used 5-fold cross-validation where the 
original dataset was randomly partitioned into 5 subsets 
and a single subset was retained as the validation data for 
testing the model, and the remaining 4 subsets were used 
as training data. The cross-validation process was repeated 
5 times with each of the 5 subsets used exactly once as 
the validation data. The results from the validation folds 
were then averaged to produce a single estimation (42). The 
classification results were analyzed for accuracy, area under 
ROC curve (AUC), F1 score, precision, recall (sensitivity), 
specificity, and confusion matrix. The classification was im-
plemented using the Orange software (43).

Results

Patient characteristics

In total, 294 patients were included in the study. After the 
exclusion of outliers, 282 patients were available for fur-
ther analysis. Their demographic and clinical data are sum-
marized in Table  1 and Fig.  2. Considering the different 
clinical entities there was a significant difference in the 
distribution of patients according to sex, with a particular 

Figure 1.  Schematic workflow of the study design.
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predominance of female patients with CS (P <  .001) and 
male patients with PHT (P =  .001). The mean age of the 
patients was 49 years (95% CI 47.5-50.6 years), with no 
significant difference between female (mean 49.8  years, 
95% CI 47.8-51.9 years) and male (mean 48.1 years, 95% 
CI 45.8-50.4 years) patients (P =  .66). However, the me-
dians of age were significantly different across the clinical 
subgroups, even if considering EHT as a common group 
(P = .009). Considering the distribution of the patients ac-
cording to age cut-off of 50 years, there was no significant 
difference between the PHT and EHT group.

Metabolite differences between groups—classical 
approach

For each comparison performed, all the results of the single 
statistical tests performed are represented in elsewhere 
(Table 2.1 (30)).

By comparing patients with PHT and CS, a total of 40 
metabolites and 6 metabolite ratios of interest (ie, with 
a significant difference in at least 2 statistical tests per-
formed) could be identified (summarized in Table 2.2 (30)). 
After considering sex and age group (<50/≥50  years) in 
a regression model only 24 metabolites and 4 metabolite 
ratios of interest continued to have a significant association 
with the clinical diagnosis (Table 2 and Table 2.2 (30)). For 
the comparison between PHT and PA, 37 metabolites and 
10 metabolite ratios of interest were identified, of which 
35 metabolites and 7 metabolite ratios had a significant as-
sociation with the clinical diagnosis after controlling for 
sex and age group (Table 2 and Table 2.3 (30)). Between 
PHT and PPGL, 29 metabolites and 9 metabolite ratios of 
interest were found, and 25 metabolites and 8 metabolite 
ratios of interest had a persistent significant association 

with the clinical diagnosis after considering sex and age 
group (Table 2 and Table 2.4 (30)).

Considering the results of the comparison of PHT 
with each EHT subgroup separately, 4 metabolites of 
interest (C18:1, C18:2, spermidine and ornithine) and 
3 metabolite ratios of interest (citrulline/ornithine, orni-
thine/arginine, and spermidine/putrescine) were common 
in discriminating between PHT and CS, PA and PPGL, 
respectively (Fig. 3).

After performing the statistical analysis considering 
all endocrine hypertension diagnosis (CS, PA, PPGL) as a 
common group (EHT) in comparison with PHT, 38 me-
tabolites of interest and 9 metabolite ratios of interest 
were identified. After including sex and age group in the 
regression model, 31 metabolites and 7 metabolite ratio 
of interest had a significant association with the clinical 
diagnosis (Table 2.5 and Fig. 4.1–4.2 (30)). Arbitrarily, we 
selected the top 15 metabolites for analysis of the diag-
nostic performance, according to the strength of their rela-
tion to the clinical diagnosis (Fig. 4).

Discrimination ability of the identified metabolites  
of interest 
We tested the diagnostic performance of the 4 common 
metabolites of interest (Table 3, panel 1a) and 3 metab-
olite ratios (Table 3, panel 1b) identified from the com-
parison between PHT with CS, PA, and PPGL. Likewise, 
we investigated the performance of the top 15 metabol-
ites (Table 3, panel 2a) and 7 metabolite ratios (Table 3, 
panel 2b) from the comparison of PHT and EHT for 
discriminating between PHT and EHT (Table  3 and 
Fig. 3 [panel 1] and Fig. 4 [panel 2]). All performed re-
gression analyses were found to be statistically significant 
(P <  .001). Considering the ROC curve results, for each 
of the 2 panels, the performance was better for the single 
metabolites (Figs.  3 and 4 top) than for the metabolite 
ratios (Figs. 3 and 4 bottom). The best performance was 
achieved by the metabolites from panel 2 (AUC 0.856, 
95% CI 0.806-0.907).

Metabolite differences between groups—machine-learning 
approach
A list of metabolites and metabolite ratios were found 
as important for identifying different forms of endocrine 
hypertension (CS, PA, PPGL) from PHT (Table 4). A total 
of 28 metabolites and 10 metabolite ratios distinguished 
PHT from CS. For PHT-PA, again 28 metabolites and 12 
ratios were seen as key identifiers and 36 metabolites and 
15 ratios were seen important in identifying PHT-PPGL. 
It was observed that 9 metabolites (C9, C18:1, C18:2, as-
partate, ornithine, spermidine, lysoPC a C20:4, lysoPC 
a C24:0, SMC18:1) and 7 ratios (citrulline/arginine, 

Table 1.  Age and sex distribution of patient cohort

Diag-
nosis

Sex Total 
(282)

P Age Percentiles P

Female  
(147)

Male  
(135)

Me-
dian

25th 75th

PHT 19 (12.9%) 40 (29.6%) 59 <.001a 47.0 33.3 65.3 .001b

CS 36 (24.5%) 4 (3.0%) 40 50.6 42.3 61.8
PA 49 (33.3%) 58 (43.0%) 107 46.7 40.7 54.2
PPGL 43 (29.3%) 33 (24.4%) 76 54.6 43.2 65.3

Abbreviations: PHT, primary hypertension; CS, Cushing syndrome; PA, pri-
mary hyperaldosteronism; PPGL, pheochromocytoma/paraganglioma.
aConsidering CS, PA, and PPGL in the common group of EHT the different 
distribution remains significant (P = .009).
bPairwise comparisons were performed with a Bonferroni correction for 
multiple comparisons. This post hoc analysis revealed statistically signifi-
cant differences in median age between PHT-PPGL (P = .002) and PA-PPGL 
(P = .015).
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citrulline/ornithine, ornithine/arginine, putrescine/orni-
thine, spermidine/putrescine, total DMA/arginine, tyrosine/
phenylalanine) were common in classification of CS, PA, 
and PPGL from PHT.

A further set of variables were used for classifying dif-
ferent subgroups of patients for PHT-EHT classification 
(Table 5 and Figs. 4.1 and 4.2 (30)). From the most common 
classification variables it was found that C18:2 and C18:1 
were most prominently used metabolites while ornithine/
arginine and spermidine/putrescine were seen as the most 
prominent metabolite ratios for classifying different pa-
tient groups, such as using all patients, male subset, female 
subset, age ≥50 and <50 years.

The diagnostic performance for PHT-EHT disease clas-
sification for metabolites and metabolite ratios was cal-
culated using the confusion matrices (Fig. 5). Following 
this approach, a total of 208 EHT and 19 PHT patients 
were correctly classified, while 15 EHT were incorrectly 

classified as PHT and 40 PHT were misclassified as EHT 
when metabolites were used for classification (Fig. 5 left). 
Similarly, in the right panel of Fig.  5, 205 EHT and 13 
PHT were correctly classified while 18 EHT and 46 PHT 
were misclassified when only metabolite ratios were used 
for classification. The percentage AUC was 83, recall (sen-
sitivity) 80, and specificity 45 for metabolites, and 74, 77, 
and 37 for metabolite ratios, respectively. The random 
forest classification accuracy when using metabolites and 
metabolite ratios were 80% and 77%, respectively. The 
other subgroup analyses results are available elsewhere 
(Fig. 3.3a–d (30)).

Common discriminators identified by the 2 
approaches

From the comparison between PHT and CS, 15 metab-
olites (C9, C18:1, C18:2, alanine, aspartate, ornithine, 

Figure 2.  Distribution of patients according to the clinical diagnosis and sex (A) and age group <50 versus ≥50 years (B). On the left are represented 
all clinical subgroups separately (PHT, CS, PA, PPGL) and on the right the endocrine forms (CS, PA, PPGL) as a common group of endocrine hyper-
tension (EHT).
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spermidine, lysoPC a C16:0, lysoPC a C16:1, lysoPC a 
C20:4, PC ae C36:1, PC ae C44:4, SM C16:1, SM C18:1, 
SM C20:2) were found in both approaches, representing 
62.5% of metabolites identified by CA and 53.6% of me-
tabolites identified by the MLA. Similarly, 17 metabolites 
(48.6% of identified metabolites from CA and 60.7% of 
metabolites identified by MLA) from the PHT-PA (C7-DC, 
C9, C16, C16:1, C18:1, C18:2, arginine, aspartate, orni-
thine, threonine, spermidine, lysoPC a C16:0, PC aa C40:1, 
PC aa C42:0, PC aa C42:1, PC aa C42:4, PC ae C44:3), as 
well as 19 metabolites (79% and 52.8% of the metabolites 
identified by CA and MLA, respectively) from PHT-PPGL 
comparison (C14:1, C14:2, C16:1, C18:1, C18:2, arginine, 
ornithine, spermidine, lysoPC a C18:2, lysoPC a C24:0, PC 
aa C32:2, PC aa C36:2, PC aa C38:6, PC aa C40:6, PC ae 
C34:2, PC ae C42:0, SM C18:0, SM C18:1, SM C24:1) 

could be identified using both approaches independently 
(Tables 2 and 4). In the comparison of PHT with each sin-
gular EHT (CS, PA, PPGL) 4 metabolites were repeatedly 
identified by CA (C18:1, C18:2, ornithine, spermidine), as 
well as by MLA. Using MLA in addition to these 4 me-
tabolites another 4 metabolites (C9, aspartate, lysoPC a 
C24:0, SM C18:1) were repeatedly identified in each sin-
gular comparison (Tables 2 and 4).

Considering all subgroup analyses, 16 metabolites (C9, 
C16, C16:1, C18:1, C18:2, arginine, aspartate, glutamate, 
ornithine, spermidine, lysoPC a C16:0, lysoPC a C20:4, 
lysoPC a C24:0, PC ae C42:0, SM C18:1, SM C20:2) were 
discriminating between PHT and EHT using both ap-
proaches, representing 66.7% of the top 15 metabolites 
from CA and 55.6% of the metabolites identified by MLA 
(Tables 3 and 5, and Table 2.5 (30)).

Figure 3.  On the left side concentrations (after generalized logarithmic transformation) of the significant common metabolites of interest (above) and 
metabolite ratios (below) found in the comparison of PHT with CS, PA and PPGL respectively, after controlling for sex and age group. Medium value 
with 95% CI of the after generalized logarithmic transformation is represented for each clinical diagnosis group. Except for Citrulline/Ornithine ratio, 
the values were lower in the PHT patients. On the right side respective ROC Curve for discrimination between PHT and EHT for panel 1 (metabolites 
[above] and metabolite ratio [below]) are depicted. The sensitivity (y-axis) and 1-Specificity (x-axis) for different cut-offs for the predicted probabilities 
of having EHT are represented. The area under the curve (AUC) with the 95% confidence interval (CI) is represented for each ROC curve.
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Discussion

In the present study, we provide evidence that targeted 

metabolomics could aid in the discrimination between 

PHT and EHT with promising sensitivity and specificity. 

Identified differences in metabolomic profiles remained sig-

nificantly independent of the applied statistical approaches 

including machine learning algorithms. This finding indi-

cates that the analytical method of targeted metabolomics 

can provide phenotypic patterns of underlying disorders 

that translates into potential diagnostic utility.

Of all patients with secondary hypertension, endocrine 

disorders are the most prevalent causes that furthermore 

carry a high cardiovascular risk burden in comparison 

with essential hypertension (44-47). The availability of 

targeted and personalized therapies that also include 

approaches that can result in complete cure of hyperten-
sion is contrasted by the low penetration of screening ap-
proaches in larger patient cohorts. Among the reasons for 
this lack of widespread implementation is that screening 
procedures often require specialized skills in performance 
and interpretation of test results. A prescreening tool as 
part of a diagnostic algorithm could be utilized before 
further endocrine testing for improved patient identifi-
cation and contribute towards better disease outcomes. 
Based on the applied diagnostic and statistical analyses 
we found a good diagnostic performance with the area 
under curves of 0.86 and 0.83, respectively. Since the 
diagnostic performance of the currently recommended se-
lection criteria for EHT screening—such as young age at 
diagnosis or high grade or resistant hypertension (14, 15, 
29)—is not available, a direct comparison with current 

Figure 4.  On the left side concentrations (after generalized logarithmic transformation) of the top 15 significant common metabolites (above) and 
metabolite ratios (below) of interest found in the comparison of PHT with EHT as common group, after controlling for sex and age group. Medium 
value with 95% CI of the metabolites (A) and metabolite ratio (B) concentration (after generalized logarithmic transformation) is represented for both 
groups. On the right side ROC Curve for discrimination between PHT and EHT for panel 2 (metabolites [upper panel] and metabolite ratio [lower 
panel]) are depicted. The sensitivity (y-axis) and 1-Specificity (x-axis) for different cut-offs for the predicted probabilities of having EHT are repre-
sented. The area under the curve (AUC) with the 95% CI is represented for each ROC curve.
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approaches is not possible. However, considering only the 
prevalence of PA, as the most common EHT of up to 23% 
in patients with uncontrolled hypertension, our preselec-
tion approach might be more selective in identifying EHT 
cases, with a specificity of up to 45% while maintaining a 
reasonably high sensitivity of 80% (Fig. 5). Considering 
the prevalence of arterial hypertension of 30% in the 

general population (48) and estimating that 10% of ar-
terial hypertension patients are EHT cases (see the intro-
ductory section) the positive and negative predictive value 
of our approach would be 4.3% and 98.6%, respectively. 
If confirmed in further studies using prospective cohorts 
and focused on the diagnostic performance and validation 
of the developed machine learning algorithms, targeted 

Table 3.  Logistic regression predicting the likelihood of EHT based on the metabolites/metabolite ratios selected for panel 1 

and panel 2

Panel 1a Metabolite B Exp(B) 95% CI for Exp(B) Sig.

Lower Upper

 C18:1 0.79 2.203 0.963 5.042 .061
 C18:2 0.504 1.655 0.747 3.666 .214
 Ornithine 0.312 1.366 0.669 2.788 .392
 Spermidine 0.769 2.157 1.339 3.477 .002
 Constant 7.095 1205.524   .027
Panel 1b metabolite ratio

 Citrulline/Ornithine 0.296 1.344 0.619 2.918 .454
 Ornithine/Arginine 1.196 3.306 1.674 6.529 .001
 Spermidine/Putrescine 0.631 1.88 1.192 2.967 .007
 Constant 2.238 9.378   <.001
Panel 2a metabolite

 C3-DC (C4-OH) 0.733 2.082 0.883 4.908 .094
 C9* –0.967 0.38 0.172 0.839 .017
 C16* –0.807 0.446 0.109 1.824 .261
 C16:1* 2.292 9.891 1.636 59.807 .013
 C18:1* 0.083 1.087 0.267 4.416 .908
 C18:2* 0.198 1.219 0.487 3.052 .672
 Arginine* –1.174 0.309 0.118 0.81 .017
 Aspartate* 0.674 1.961 0.867 4.439 .106
 Glutamate 0.068 1.071 0.611 1.876 .811
 Ornithine* 0.572 1.772 0.695 4.517 .231
 Spermidine* 0.698 2.009 1.15 3.51 .014
 lysoPC a C20:4* –0.089 0.915 0.358 2.337 .853
 PC aa C38:6 –0.731 0.481 0.065 3.594 .476
 PC aa C40:6 0.667 1.949 0.296 12.839 .488
 PC aa C42:1 0.927 2.527 0.889 7.178 .082
 Constant 16.52 14947591.2   .021

Panel 2b metabolite ratio B Exp(B) 95% CI for Exp(B) Sig.

lower upper

 Citrulline/Arginine* –16.119 9.99 × 10–08 1.42 × 10–16 70.154 .121
 Citrulline/Ornithine* 16.508 14770678.1 0.023 9.6091 × 1015 .111
 CPT-I ratio* 0.675 1.963 0.941 4.095 .072
 Ornithine/Arginine* 17.429 37084306.7 0.056 2.439 × 1016 .092
 Spermidine/Putrescine* 0.621 1.86 1.171 2.955 .009
 Total DMA/Arginine* –0.236 0.79 0.336 1.854 .588
 Tyrosine/Phenylalanine* –1.334 0.263 0.073 0.953 .042
 Constant 6.017 410.15   .09

Abbreviations: B, B coefficient; Exp(B), odds ratio of the independent variable; CI, confidence interval; sig., significant. For abbreviations/nomenclature of the 
variable please refer to Table 2. Statistically significant values (P < .05) are presented in bold. Metabolites/metabolite ratios found using both approaches (classical 
[top 15 metabolites] and machine-learning approach) are marked with an asterisk (*).

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/106/4/1111/6056647 by guest on 12 April 2021



1122 � The Journal of Clinical Endocrinology & Metabolism, 2021, Vol. 106, No. 4

Ta
b

le
 4

. 
M

et
ab

o
lit

es
/m

et
ab

o
lit

e 
ra

ti
o

s 
id

en
ti

fi
ed

 u
si

n
g

 t
h

e 
m

ac
h

in
e 

le
ar

n
in

g
 a

p
p

ro
ac

h

M
et

ab
ol

it
e

PH
T

 v
s.

M
et

ab
ol

it
e

PH
T

 v
s.

M
et

ab
ol

it
e

PH
T

 v
s.

M
et

ab
ol

it
e 

ra
ti

o
PH

T
 v

s.

C
S

PA
PP

G
L

C
S

PA
PP

G
L

C
S

PA
PP

G
L

C
S

PA
PP

G
L

A
cy

lc
ar

ni
ti

ne
s

 
 

 
B

io
ge

ni
c 

am
in

es
 

 
 

G
ly

ce
ro

ph
os

ph
ol

ip
id

s 
(c

on
t.

)
 

 
 

(C
2 

+ 
3)

/C
0

 
 

x

C
2

x
 

x
al

ph
a-

A
A

A
 

 
x

PC
 a

a 
C

42
:4

 
x*

 
C

2/
C

0
 

 
x

C
8

x
 

x
Sp

er
m

id
in

e
x*

x*
x*

PC
 a

e 
C

32
:1

 
x

 
C

it
ru

lli
ne

/A
rg

in
in

e
x

x*
x*

C
7-

D
C

x
x*

 
G

ly
ce

ro
ph

os
ph

ol
ip

id
s

 
 

 
PC

 a
e 

C
32

:2
 

x
 

C
it

ru
lli

ne
/O

rn
it

hi
ne

x*
x*

x*
C

9
x*

x*
x

ly
so

PC
 a

 C
16

:0
x*

x*
 

PC
 a

e 
C

34
:2

 
 

x*
C

PT
-I

 r
at

io
 

x*
x

C
10

:1
 

x
x

ly
so

PC
 a

 C
16

:1
x*

 
 

PC
 a

e 
C

34
:3

x
 

x
Fi

sc
he

r 
ra

ti
o

 
x

x
C

12
x

 
 

ly
so

PC
 a

 C
18

:0
 

x
x

PC
 a

e 
C

36
:1

x*
 

 
M

et
-S

O
/M

et
x

 
x*

C
14

:1
 

 
x*

ly
so

PC
 a

 C
18

:2
 

 
x*

PC
 a

e 
C

38
:1

 
x

 
O

rn
it

hi
ne

/A
rg

in
in

e
x*

x*
x*

C
14

:2
x

 
x*

ly
so

PC
 a

 C
20

:4
x*

x
x

PC
 a

e 
C

40
:3

 
x

 
Pu

tr
es

ci
ne

/O
rn

it
hi

ne
x

x*
x*

C
16

 
x*

 
ly

so
PC

 a
 C

24
:0

x
x

x*
PC

 a
e 

C
42

:0
x

 
x*

Sp
er

m
id

in
e/

Pu
tr

es
ci

ne
x*

x*
x*

C
16

:1
 

x*
x*

PC
 a

a 
C

32
:1

 
x

 
PC

 a
e 

C
44

:3
 

x*
 

To
ta

l D
M

A
/A

rg
in

in
e

x
x*

x*
C

16
:1

-O
H

x
 

x
PC

 a
a 

C
32

:2
 

 
x*

PC
 a

e 
C

44
:4

x*
 

 
Ty

ro
si

ne
/P

he
ny

la
la

ni
ne

x*
x

x*
C

18
:1

x*
x*

x*
PC

 a
a 

C
34

:2
 

x
x

Sp
hi

ng
ol

ip
id

s
 

 
 

M
et

ab
ol

it
e 

su
m

 
 

 
C

18
:2

x*
x*

x*
PC

 a
a 

C
34

:4
 

 
x

SM
 (

O
H

) 
C

16
:1

x
 

 
A

A
A

 
x

 
A

m
in

o 
A

ci
ds

 
 

 
PC

 a
a 

C
36

:2
 

 
x*

SM
 (

O
H

) 
C

24
:1

x
 

 
B

C
A

A
 

x
 

A
la

ni
ne

x*
 

 
PC

 a
a 

C
36

:3
 

 
x

SM
 C

16
:1

x*
 

 
E

ss
en

ti
al

 A
A

 
x

 
A

rg
in

in
e

 
x*

x*
PC

 a
a 

C
36

:4
 

 
x

SM
 C

18
:0

 
 

x*
G

lu
co

ge
ni

c 
A

A
x

 
x

A
sp

ar
ta

te
x*

x*
x

PC
 a

a 
C

38
:6

 
 

x*
SM

 C
18

:1
x*

x
x*

N
on

es
se

nt
ia

l A
A

 
 

x
G

lu
ta

m
in

e
 

 
x

PC
 a

a 
C

40
:1

 
x*

 
SM

 C
20

:2
x*

 
 

To
ta

l A
A

x
 

X
H

is
ti

di
ne

 
 

x
PC

 a
a 

C
40

:6
 

 
x*

SM
 C

24
:1

 
 

x*
 

 
 

 
O

rn
it

hi
ne

x*
x*

x*
PC

 a
a 

C
42

:0
 

x*
 

M
on

os
ac

ch
ar

id
es

 
 

 
 

 
 

 
T

hr
eo

ni
ne

 
x*

 
PC

 a
a 

C
42

:1
x

x*
 

H
1

x
 

x
 

 
 

 

L
is

t o
f m

et
ab

ol
it

es
 a

nd
 m

et
ab

ol
it

e 
ra

ti
os

/s
um

s 
fo

un
d 

in
 a

t l
ea

st
 1

 o
f t

he
 c

on
si

de
re

d 
co

m
pa

ri
so

n 
su

bg
ro

up
s 

(a
ll 

pa
ti

en
ts

, m
al

e,
 fe

m
al

e,
 a

ge
 <

50
 a

nd
 ≥

50
 y

ea
rs

) o
f P

H
T

 w
it

h 
C

S,
 P

A
, a

nd
 P

PG
L

, r
es

pe
ct

iv
el

y.
 “

x”
 in

di
ca

te
s 

in
 w

hi
ch

 
co

m
pa

ri
so

n 
gr

ou
p 

th
e 

m
et

ab
ol

it
e/

m
et

ab
ol

it
e 

ra
ti

o 
ha

s 
be

en
 id

en
ti

fie
d.

 M
et

ab
ol

it
es

/m
et

ab
ol

it
e 

ra
ti

os
 f

ou
nd

 u
si

ng
 b

ot
h 

ap
pr

oa
ch

es
 (

cl
as

si
ca

l a
nd

 m
ac

hi
ne

 le
ar

ni
ng

) 
ar

e 
m

ar
ke

d 
w

it
h 

an
 a

st
er

is
k 

(*
). 

Se
x 

an
d 

ag
e 

w
er

e 
in

cl
ud

ed
 

as
 v

ar
ia

bl
es

 in
 t

he
 a

na
ly

se
s:

 s
ex

 w
as

 a
 r

el
ev

an
t 

va
ri

ab
le

 in
 t

he
 c

om
pa

ri
so

n 
be

tw
ee

n 
PH

T
 a

nd
 C

S 
(m

et
ab

ol
it

es
 a

nd
 m

et
ab

ol
it

e 
ra

ti
os

) 
as

 w
el

l a
s 

PH
T

 v
s 

PA
 a

nd
 v

s 
PP

G
L

 (
m

et
ab

ol
it

e 
ra

ti
os

);
 a

ge
 w

as
 a

 r
el

ev
an

t 
va

ri
ab

le
 in

 t
he

 
co

m
pa

ri
so

n 
of

 P
H

T
 v

s 
PA

 a
nd

 v
s 

PP
G

L
 (

m
et

ab
ol

it
es

 a
nd

 m
et

ab
ol

it
e 

ra
ti

os
) 

an
d 

PH
T

 v
s 

C
S 

(m
et

ab
ol

it
e 

ra
ti

os
).

A
bb

re
vi

at
io

ns
: a

, a
cy

l; 
aa

, d
ia

cy
l; 

ae
, a

cy
l-

al
ky

l; 
al

ph
a-

A
A

A
, a

lp
ha

-A
m

in
oa

di
pi

c 
ac

id
; 

C
PT

-I
, c

ar
ni

ti
ne

 p
al

m
it

oy
l 

tr
an

sf
er

as
e 

I;
 C

S,
 C

us
hi

ng
 s

yn
dr

om
e;

 C
x:

y 
in

di
ca

te
s 

th
e 

lip
id

 c
ha

in
 c

om
po

si
ti

on
 w

he
re

 “
x”

 is
 t

he
 n

um
be

r 
of

 
ca

rb
on

s 
an

d 
“y

” 
th

e 
nu

m
be

r 
of

 d
ou

bl
e 

bo
nd

s.
 D

M
A

, d
im

et
hy

la
rg

in
in

e;
 H

1,
 s

um
 o

f 
H

ex
os

es
 (

in
cl

ud
in

g 
G

lu
co

se
);

 L
ys

oP
C

, l
ys

op
ho

sp
ha

ti
dy

lc
ho

lin
e;

 M
et

-S
O

, M
et

hi
on

in
e 

su
lf

ox
id

e;
 P

A
, p

ri
m

ar
y 

hy
pe

ra
ld

os
te

ro
ni

sm
; P

C
, p

ho
s-

ph
at

id
yl

ch
ol

in
e;

 P
H

T,
 p

ri
m

ar
y 

hy
pe

rt
en

si
on

; S
M

, s
ph

in
go

m
ye

lin
 (

se
e 

al
so

 T
ab

le
 1

 (
30

))
; P

PG
L

, p
he

oc
hr

om
oc

yt
om

a/
pa

ra
ga

ng
lio

m
a.

A
bb

re
vi

at
io

ns
 m

et
ab

ol
it

e 
ra

ti
os

 a
nd

 s
um

s:
 A

A
A

, s
um

 o
f 

ar
om

at
ic

 a
m

in
o 

ac
id

s;
 B

C
A

A
, s

um
 o

f 
br

an
ch

ed
 c

ha
in

 a
m

in
o 

ac
id

s;
 C

PT
-I

 r
at

io
, r

at
io

 o
f 

lo
ng

 c
ha

in
 a

cy
lc

ar
ni

ti
ne

s 
to

 f
re

e 
ca

rn
it

in
e 

([
C

16
+C

18
]/

C
0)

; E
ss

en
ti

al
 A

A
, s

um
 

of
 e

ss
en

ti
al

 a
m

in
o 

ac
id

s;
 F

is
ch

er
 r

at
io

, r
at

io
 o

f 
B

C
A

A
 t

o 
A

A
A

; G
lu

co
ge

ni
c 

A
A

, s
um

 o
f 

se
le

ct
ed

 g
lu

co
ge

ni
c 

am
in

o 
ac

id
s 

(A
la

, G
ly

, S
er

);
 M

et
-S

O
/M

et
, f

ra
ct

io
n 

of
 s

ul
fo

xi
di

ze
d 

M
et

 o
f 

un
m

od
ifi

ed
 M

et
 p

oo
l; 

N
on

-e
ss

en
ti

al
 A

A
, 

su
m

 o
f 

th
e 

no
ne

ss
en

ti
al

 a
m

in
o 

ac
id

s;
 T

ot
al

 A
A

, s
um

 o
f 

al
l a

m
in

o 
ac

id
s;

 T
ot

al
 D

M
A

/A
rg

, f
ra

ct
io

n 
of

 d
im

et
hy

la
te

d 
A

rg
 o

f 
th

e 
un

m
od

ifi
ed

 A
rg

 p
oo

l.

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article/106/4/1111/6056647 by guest on 12 April 2021



The Journal of Clinical Endocrinology & Metabolism, 2021, Vol. 106, No. 4� 1123

metabolomics could be suitable as a very good rule-out 
test for EHT. Therefore, by implementing the proposed 
algorithm in the routine work-up of patients with arterial 
hypertension, a single fasting blood sampling would allow 
to restrict further cumbersome tests (such as 24 hour urine 
collection, midnight cortisol measurements, functional 
testing) to those with a high probability of EHT. However, 
because of its design, this approach cannot exclude the 

presence of other secondary causes of arterial hyperten-
sion, such as renovascular disease.

Even though it was not the primary goal of this study, 
distinct metabolomic patterns in the comparison of PHT 
with the single entities of EHT (CS, PA, PPGL) were evi-
dent. Based on these data, it will be interesting in future 
studies to test the ability of metabolomics as diagnostic 
tool to identify a specific EHT entity that would target 

Table 5.  Sets of features including unique metabolites/metabolite ratios, age, and sex discriminating between EHT and 

PHT found in different subgroups of patients (all patients and subgroups according to sex and age group from the machine 

learning approach

Unique metabolites Metabolite ratios

Features Patient group Features Patient group

All M F ≥50 <50 All M F ≥50 <50

C18:2* x x x x x Ornithine/Arginine* x x x x x
C18:1* x x x x x Spermidine/Putrescine* x x x x x
Spermidine* x x  x x Citrulline/Arginine* x  x x  
Ornithine* x x x x  CPT-I ratio* x x x  x
lysoPC a C16:0** x x   x Citrulline/Ornithine* x x x x  
C16:1* x     Sex x    x
C9* x x  x  Total DMA/Arginine* x  x  x
PC aa C36:4 x     Tyrosine/Phenylalanine* x  x  x
SM C18:1** x   x  Glucogenic AA x  x   
lysoPC a C20:4* x x x   Age  x    
C10:1 x     Putrescine/Ornithine  x    
lysoPC a C17:0 x     Fisher ratio   x   
SM C20:2** x     C2/C0   x   
PC ae C42:0** x   x        
C2 x   x        
PC aa C34:2  x          
C16*  x          
lysoPC a C24:0**   x         
Aspartate*   x         
Arginine*   x         
lysoPC a C18:2   x         
C16:1-OH    x        
PC ae C34:2    x        
Serine    x        
C12:1    x        
H1     x       
Sex     x       
PC aa C36:2     x       

The order in which the features were listed corresponds to the most common feature appearing in different classifications on top. The variables marked with an 
asterisk (*) were observed as discriminating variables in both classical [top 15 metabolites] and machine learning approaches.
The double asterisk (**) marks those metabolites also identified in the classical approach not being selected in the top 15 (Table 2.5 and Fig. 4.1–4.2 (30)).
Apart from the common discriminating variables for PHT-EHT, in male and female subgroups, PC aa C34:2 and C16 were seen important variables in the 
male subset while lysoPC a C24:0, aspartate, arginine, and lysoPC a C18:2 appeared as discriminating variables in female subgroup. For age-based subgroups, 
C16:1-OH, PC ae C34:2, serine, and C12:1 were seen as important variables for age ≥50 years and H1, sex and PC aa C36:2 for age <50 years subgroup. Similarly 
for metabolite ratios, it was observed that putrescine/ornithine and age were discriminating variables for males, however, the Fisher ratio and C2/C0 were seen as 
discriminating for females along with few other common variables.
Abbreviations: F, female; M, male; ≥50, patients age 50 years or older; <50, patients younger than 50 years. For abbreviations/nomenclature of the variable please 
refer to Tables 2 and 3.
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further baseline or functional tests towards a specific dis-
ease. Ideally, this would also decrease the likelihood of pit-
falls of undirected diagnostic approaches that are based on 
comorbidities or medication (15, 29, 49).

Beyond diagnostic usage, metabolic approaches can also 
provide insights into disease-related mechanisms. Distinct 
metabolic profiles between PHT and individual or com-
bined EHT subgroups could be identified including differ-
ences in acylcarnitines, amino acids/biogenic amines, and 
glycerophospholipids levels. In particular, higher levels 
of long-chain acylcarnitines (C16, C16:1, C18:1, C18:2) 
were a consistent finding distinguishing PHT and EHT. 
This is of particular interest considering the association 
of these metabolites with cardiovascular complications. In 
fact, in vitro studies have indicated deleterious effects of 
higher levels of long-chain acylcarnitines on cardiac tissue, 
influencing the cardiac electrophysiology and cell contract-
ility (50). Similarly, in patient cohort studies, higher levels 
of long-chain acylcarnitines were found to be associated 
with heart failure (most pronounced in patients with pre-
served ejection fraction) and were identified as independent 
risk factors for cardiovascular mortality in patients with 
end-stage renal disease starting hemodialysis (51, 52). Since 
patients with endocrine forms of hypertension have an in-
creased risk of cardiovascular complications compared to 
matched PHT controls (44-47), it is tempting to speculate 

that those metabolic changes might relate to these clinical 
observations. Furthermore, higher levels of acylcarnitines 
have been described in patients with insulin resistance 
and diabetes mellitus (50, 53), the latter being also related 
to all 3 EHT forms considered in our study (45, 54, 55). 
Considering the results of our ratio analyses, the CPT-I en-
zyme activity might play a relevant role in this context.

Other observations common to the different statistical 
approaches were the distinct profiles of some amino acids/
biogenic amines being higher (aspartate, glutamate, orni-
thine, spermidine) and lower (arginine) in the EHT pa-
tients. Arginine is the precursor of biogenic amines like 
spermidine and its low level with concomitant higher 
levels of ornithine, a precursor in spermidine synthesis, 
and spermidine itself points toward activation of the bio-
genic amine synthesis in patients with EHT (56). Higher 
levels of biogenic amines have been associated with car-
cinogenesis, inflammation and heart failure (56-58), and 
in vitro studies describe its deleterious effect in ischemic 
cardiac cells (59). Furthermore, nitric oxide synthesis re-
lies on arginine availability and therefore low arginine 
levels might cause reduced nitric oxide levels (60), which 
is associated with endothelial dysfunction, considered as an 
early step in the pathogenesis of atherosclerosis (61). These 
findings might contribute as well to the spectrum of the 
metabolic changes related to increased cardiovascular risk 

Figure 5.  Discriminating potential of the features (metabolites on the left and metabolite sums/ratio on the right) identified by machine learning ap-
proach and their diagnostic performance. On the top, the ROC curve is represented, and in the middle the confusion matrices showing actual and 
predicted number of samples as result of classification using metabolites and metabolites sums/ratios for PHT-EHT disease combination using all 
samples. On the bottom, the performances are represented (for details see “Results”). The confusion matrices show the actual and predicted number 
of patients after 5-cross-validation classification.
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in patients with EHT (44-47). Besides, the higher levels of 
aspartate and glutamate might reflect the described effect 
of hypercortisolism (62, 63), hyperaldosteronism (64, 65), 
and catecholamine excess (66) on skeletal muscle, with in-
creased protein turnover and degradation. It is of interest 
that higher glutamate levels have been associated with 
neuropsychological disorders such as major depression (67) 
being one of the hallmarks of patients with CS, but also 
commonly observed in patients with PA (63, 68). Higher 
levels of lysophosphatidylcholins (lysoPC a C16:0, lysoPC 
a C20:4, lyspPC a 24:0) and sphingomyelin (SM C18:1) 
were observed in patients with EHT compared with PHT. 
Both lysophosphatydilcholin (69, 70) and sphingomyelin 
(71) are associated with increased cardiovascular risk, 
pointing out another metabolic pattern possibly explaining 
the higher incidence of cardiovascular complication in this 
group of hypertensive patients. However, it remains unclear 
whether all these findings are associated with a common 
pathogenic mechanism or are related to EHT.

The strength of the current investigation bases on the 
relatively high number of cases with EHT studied, which 
was only possible thanks to a concerted multi-centric ap-
proach. Furthermore, by using identical predetermined 
diagnostic criteria, very well characterized and uniformly 
investigated patient cohorts had been established for com-
parison. Another strength of this study is the well-defined 
and standardized process of sample collection and storage, 
which minimized the influence of various external factors 
such as food intake on metabolite levels and thus on the 
study results.

Nevertheless, we are aware that the large number of in-
vestigated metabolites in relation to the number of patients, 
as well as the different distribution of patients according 
to age and sex and the retrospective study design, might 
have impacted on the results. It is further possible, that pa-
tient characteristics beyond age and sex as well as extrinsic 
factors such as smoking might have affected analytes and 
thereby the overall test performance. In addition, with the 
exception of an overnight fasting, the study protocol did 
not include other specific dietary restrictions. Notably, the 
targeted analytic approach and the strict selection criteria 
for relevant metabolites achieved similar results following 
different statistical approaches. While this should lend the 
study more robustness, it might have resulted in the over-
sight of other relevant metabolic changes. Furthermore, 
the main goal of this study was to identify common 
discriminating features while using different approaches 
and not to compare the 2 distinct analysis approaches (CA 
and MLA). Future studies will focus on further improving 
the MLA performance by exploring more algorithms and 
classifiers to enhance the performance ability of the MLA 
for targeted metabolomics, which could be implemented in 

the clinical routine. In addition, as described in “Materials 
and Methods” we had to deal with distinct distributions 
between clinical categories according to sex and age, as 
well as participating center (data not shown). Therefore, 
it was not possible for us to perform further internal valid-
ation analyses considering each possible scenario.

The main goal of our study was to identify metabolomic 
differences, which might be used in future diagnostics. 
However, before implementation in diagnostic, routine 
confirmation of our results as well as optimization of the 
machine learning algorithms are necessary, taking also into 
account the problem of outliers (technical or biological) in 
“omic”-analyses, as has been outlined in the literature (72). 
The prospective studies (currently under way) will allow 
further refinement of the models before translating them 
into clinical practice.

Furthermore, we appreciate obstacles in the implemen-
tation of the utilized mass spectrometry based analysis in 
the diagnostic routine. While liquid chromatography mass 
spectrometry platforms are not widely available, they have 
been increasingly introduced into clinical routine and are 
likely to find further distribution in the future (73).

Another challenging aspect concerns the physician’s 
exemption from the interpretation of the single measured 
value (metabolite) and the need to entrust the decision to 
a complex mathematical algorithm. A potential place of 
the proposed screening assay would be in a nonspecialized 
general physician setting, where conventional endocrine 
diagnostics are avoided because of uncertainty in the in-
terpretation of test results. In this setting, endocrine ex-
pertise would remain to be required with confirmation 
or ruling out of endocrine hypertension in prescreened 
patients.

In conclusion, we provide evidence that targeted 
metabolomics is a promising tool in discriminating patients 
with PHT and EHT to be used as a preselection tool for 
those individuals who would benefit from further referral 
for endocrine workup. Confirmation in a prospective co-
hort and analyses of the benefits in terms of morbidity and 
mortality as well as the cost-effectiveness of the procedure 
should be evaluated.
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