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Abstract: Hypertension is a major global health problem with high prevalence and complex asso-
ciated health risks. Primary hypertension (PHT) is most common and the reasons behind primary
hypertension are largely unknown. Endocrine hypertension (EHT) is another complex form of
hypertension with an estimated prevalence varying from 3 to 20% depending on the population
studied. It occurs due to underlying conditions associated with hormonal excess mainly related
to adrenal tumours and sub-categorised: primary aldosteronism (PA), Cushing’s syndrome (CS),
pheochromocytoma or functional paraganglioma (PPGL). Endocrine hypertension is often misdiag-
nosed as primary hypertension, causing delays in treatment for the underlying condition, reduced
quality of life, and costly antihypertensive treatment that is often ineffective. This study systemat-
ically used targeted metabolomics and high-throughput machine learning methods to predict the
key biomarkers in classifying and distinguishing the various subtypes of endocrine and primary
hypertension. The trained models successfully classified CS from PHT and EHT from PHT with
92% specificity on the test set. The most prominent targeted metabolites and metabolite ratios for
hypertension identification for different disease comparisons were C18:1, C18:2, and Orn/Arg. Sex
was identified as an important feature in CS vs. PHT classification.

Keywords: metabolomics; machine learning; hypertension; primary aldosteronism; pheochromocytoma/
paraganglioma; Cushing syndrome; biomarkers

1. Introduction

One of the main risk factors for cardiovascular disease is arterial hypertension. Arterial
hypertension is a significant health problem that affects a wide population every year [1].
The underlying mechanisms of primary (essential) arterial hypertension are multiple and
largely unknown. There are forms of so-called secondary hypertension, where arterial
hypertension is one of the clinical manifestations of the underlying disease. Among those,
we distinguish the endocrine hypertension cases, caused by hormonal hypersecretion
mainly related to diseases of the adrenal glands. The latter are represented by primary
aldosteronism (PA), Cushing’s syndrome (CS), and pheochromocytoma/functional para-
ganglioma (PPGL), which are highly challenging to diagnose in the early stages [2]. The
reason for this lies in the cumbersome diagnostic process, requiring complex pre-analytical
procedures and expertise in the interpretation of the test results, making it less available
for the high number of patients of this global pandemic. Metabolomics has already been
successfully used in patients with endocrine-related hypertension [3–5] and recently our
research group identified different metabolic fingerprint discrimination between primary
and endocrine hypertension cases [6]. Metabolomics is a relatively new approach for the
parallel and high-throughput identification and quantification of numerous low molecular
weight molecules (metabolites). Whilst untargeted metabolomics identifies numerous
molecules without prior knowledge of their presence, there is often a lack of quantification
and definite biochemical annotation. In contrast, targeted metabolomics provides the
advantage of reliable quantification of metabolites with known biochemical annotation
making it more suitable for the diagnostic purpose [7].

Machine learning (ML) is capable of processing large datasets in a minimal time frame
and can provide accurate clinical insights to aid physicians in diagnosis and treatments.
In recent years, ML methods have been widely popular in medicine [8,9], biomarker dis-
covery in high-dimensional omics data [10], and detecting signatures of disease in liquid
biopsies [11]. Some studies investigated targeted metabolomics markers of preclinical
Alzheimer’s disease [12], psoriasis [13], and the detection of intrauterine growth restric-
tion [14]. In the past, a variety of ML methods such as k-nearest neighbours, support vector
machines, and decision trees have been evaluated for targeted metabolomics [15,16].
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In this study, we investigated various supervised machine learning methods and
evaluate their classification performance through overall classification accuracy, specificity,
and sensitivity using the targeted metabolomics dataset previously published [6]. The
dataset was also investigated within subsets of age and sex to evaluate its impact on
the model training, prediction performance, and corresponding selected features. The
most prominent metabolites and their ratios were identified for distinguishing various
hypertension subtypes.

2. Materials and Methods
2.1. Omic Dataset

The metabolomics dataset was described in detail in our previous work [6]. Briefly,
blood plasma samples were collected from 294 male and female patients between 16–78 years
with one of the four underlying hypertension subtypes, (PA, PPGL, CS, and PHT). Of
the 282 patients included in the final analyses (see the exclusion of outliers below), we
had information on the presence of diabetes mellitus in 88.7% and BMI data for 86.9% of
cases. Diabetes mellitus was present in 12% of cases, with a higher prevalence in patients
with CS (26.7%) and PPGL (26.5%), as expected [17–19]. Obesity (BMI ≥ 30 kg/m2) was
present in 24.5% of patients, with the highest prevalence in patients with CS (40%), followed
by PA (32.6%), PHT (22.4%), and PPGL (7.7%), in accordance with the literature [17–19].
The PA patients comprised of aldosterone-producing adenoma (APA) (n = 66), bilateral
adrenal hyperplasia (BAH) (n = 36), and unknown (n = 5, adrenal venous sampling failed:
1 and refused: 4). The samples were provided by 11 centers of the ENS@T-HT consortium
(http://www.ensat-ht.eu accessed on 1 June 2022). The study was conducted according to
the guidelines of the Declaration of Helsinki and approved by the local ethics committees
of participating centers.

Table 1 presents a breakdown of the patients by their disease subtypes for analysis,
after the exclusion of outliers (see below). The specific inclusion and exclusion criteria for
each hypertension subtype are provided in Appendix B.

Table 1. Patient data for all disease types namely Cushing’s syndrome (CS), primary aldosteronism
(PA), pheochromocytoma or paraganglioma (PPGL), and primary hypertension (PHT). There was a
significant difference in the distribution of patients according to sex (p < 0.001) and age (p = 0.006)
between the disease groups. The difference was significant also when considering CS, PA, and PPGL
in the common EHT group for sex (p = 0.009), but not for age (p = 0.088). For distribution difference
analysis, the Pearson Chi-Square Test was performed using the SPSS® Statistics v26.0 (IBM).

Disease Patient Count
(n=)

Sex Age Distribution

Male
(n=)

Female
(n=) Patient Age ≥ 50 Patient Age < 50

Cushing’s Syndrome (CS) 40 4 36 22 18
Primary Aldosteronism (PA) 107 58 49 42 65

Pheochromocytoma or
Paraganglioma (PPGL) 76 33 43 48 28

Primary Hypertension (PHT) 59 40 19 23 36

The targeted metabolomics approach was based on LC-ESI-MS/MS and FIA-ESI-
MS/MS measurements by AbsoluteIDQTM p180 Kit (BIOCRATES Life Sciences AG, Inns-
bruck, Austria). The assay allows simultaneous quantification of 188 metabolites and
includes free carnitine, 39 acylcarnitines, 21 amino acids (19 proteinogenic + citrulline +
ornithine), 21 biogenic amines, hexoses (sum of hexoses—about 90–95% glucose), 90 glyc-
erophospholipids (14 lysophosphatidylcholines (lysoPC) and 76 phosphatidylcholines
(PC)), and 15 sphingolipids (SM). Further details are provided in Appendix C.

In addition to the investigated samples, five aliquots of a pooled reference plasma
were analysed on each kit plate. The results of these reference plasma aliquots were used

http://www.ensat-ht.eu
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for the calculation of potential batch effects and data normalization. We included all
metabolite measurements with peaks above the limit of detection, defined as three times
the values of the zero samples, as well as those below this threshold if the respective peak
was detectable visually. To ensure the comparability of received data between batches,
each metabolite value was normalized as previously described [20,21]. Metabolites for
which measurement values were valid in less than 3 of 5 reference plasma were excluded
from normalization and further statistical analysis. We further excluded metabolites for
which the coefficient of variance of reference plasma was >25% within and between batches
(exceptions included 8 metabolites for which only the variance between batches, but not
within, were only slightly above the predetermined cut-off prior normalization) and those
metabolites for which values were not detectable in >40% of samples. From 188 metabolites,
155 passed these selection criteria. In addition to the 155 eligible metabolites, 18 pre-defined
metabolite sums and ratios were eligible for further analyses (See Table A1 in Appendix A).
The missing values of the metabolites with <40% of undetectable data were estimated using
the KNN method, considering each subgroup of clinical conditions separately [22].

Using the heatmap analysis method, we identified potential outliers among the studied
patients as previously described [23], and those patients were excluded from the statistical
analysis. In total, 282 patients were eligible for further analyses (See Table 1).

The missing data estimation and outlier detection were performed using the Metabo-
Analyst platform [23]. The final dataset was catalogued in RDMP Software [24] for system-
atic access.

2.2. ML Analysis Pipeline

The small metabolites data was evaluated for five different disease comparisons namely
All vs. All (i.e., PA vs. PPGL vs. CS vs. PHT), EHT (i.e., PA + PPGL + CS) vs. PHT,
PA vs. PHT, PPGL vs. PHT, and CS vs. PHT (See Figure 1). Each of these comparisons
was investigated for possible bias due to age and sex by creating six sets. These sets
included: A. All patients, all metabolite features (including age and sex); B. All patients,
all metabolite features (excluding age and sex); C. Male patients, all metabolite features
(including age); D. Female patients, all metabolite features (including age); E. All patients
(with age ≥ 50 years), all metabolite features (including sex); and F. All patients (with
age < 50 years), all metabolite features (including sex). Set E and F were bifurcated based
on average female menopausal age i.e., 50 years to understand the effect of patient age on
metabolites. These segregated sets were also useful in comparing their respective significant
discriminating features and using them for final model training.

The ML analysis pipeline investigated (See Figure 1) three feature selection methods:
(a) Using all features, (b) CFS: correlation-based feature selection [25], and (c) Boruta [26];
and eight different supervised learning classifiers (J48 [27], IBk [28], Bayes Net [29], Log-
itboost [30], Logistic Model Tree (LMT) [31], Simple Logistic (SL) [32], Random Forest
(RF) [33], and Sequential minimal optimization (SMO) [34]).

The complete metabolomics dataset was randomly partitioned into 80% training and
20% testing sets (See Table A2 in Appendix A). The training set was used for the Monte
Carlo Cross-Validation (MCCV) approach [35] and, therefore, further partitioned into 80%
training and 20% validation sets. On the other hand, the testing set was only used to test
the final model (See Figure 1). A set of five metrics: balanced accuracy (arithmetic mean
between sensitivity and specificity) [36], sensitivity, specificity, F1 score (with beta = 1), and
AUC were used to evaluate the classification performance. These were calculated using the
confusionMatrix function from caret package [37].

The ML analysis pipeline was divided into three phases. Phase 1 studied the best
feature selection and top classification algorithms using All vs. All disease comparison for
set A (as they represent the complete dataset) with the MCCV approach. It used 100 random
repeats (as in [38]) to train algorithms and then compared their average performance metrics
(accuracy, sensitivity, and specificity) on the validation set.
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In Phase 2, the best feature selection and top 4 classifiers from Phase 1 are used
to find the discriminating features (metabolites and their ratios) for remaining disease
combinations with MCCV. The most selected features during the 100 random repeats are
considered as top features and hence saved.

Finally, in Phase 3, the subset of top common features from the training set was down-
sampled (to avoid class imbalance) and then used for training the best-performing classifier
(from Phase 2). This final classifier was then tested on the test set and the predictions
were saved (for each disease comparison and set combination). All classifications were
implemented with the RWeka package [39] in the R language [40].

3. Results
3.1. Evaluation of Feature Selection Methods & Classifiers

Phase 1 of the ML analysis pipeline investigated ALL vs. ALL (PA vs. PPGL vs.
CS vs. PHT) disease comparison using CFS and Boruta feature selection methods. The
classification was also performed using all features (i.e., no feature reduction). Table 2
shows the mean values of five performance metrics (i.e., balanced accuracy, sensitivity,
specificity, F1 score, and AUC) for all three feature selection approaches when used in
conjunction with different classifiers across the 100 MCCV repeats. It was observed that
using all features for classification provided the best metrics followed by Boruta and CFS
methods. Although the mean accuracies for ALL vs. ALL disease comparisons are low,
since it is a complex multi-class problem, still it is evident that Boruta being a wrapper-
based method provides reasonably better classification than CFS. Tables A3–A6 show the
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classification performance for the remaining four disease combinations. Hence, Boruta was
empirically selected for the rest of the ML analysis pipeline. Similarly, based on the metrics,
SL, LMT, LB, and RF were selected as the top four classifiers. RF was selected instead
of NB since it was able to provide a consistent performance irrespective of the choice of
the feature selection method). Hence, Boruta and SL, LMT, LB, and RF were selected for
Phase 2 of the analysis.

Table 2. Mean balanced accuracy, sensitivity, and specificity (across the 100 MCCV repeats) for ALL
vs. ALL disease combinations for all 9 classifiers using all features, CFS, and Boruta methods.

ALL vs. ALL

Classifier
All CFS Boruta

B. Acc
(%)

Sen
(%)

Spec
(%) F1 AUC B. Acc

(%)
Sen
(%)

Spec
(%) F1 AUC B. Acc

(%)
Sen
(%)

Spec
(%) F1 AUC

IBk 60 41 79 0.39 0.60 57 35 78 0.29 0.57 58 37 79 0.35 0.58
J48 56 35 78 0.30 0.58 57 36 78 0.31 0.60 56 34 78 0.27 0.57
LB 61 42 80 0.41 0.71 60 40 80 0.31 0.68 60 40 80 0.32 0.68

LMT 69 54 84 0.53 0.81 58 38 79 0.32 0.69 60 41 80 0.36 0.69
NB 64 48 81 0.44 0.73 59 40 79 0.26 0.68 60 41 80 0.29 0.68
RF 60 40 80 0.24 0.76 59 38 79 0.29 0.68 59 38 79 0.28 0.70
SL 69 54 84 0.54 0.82 58 38 79 0.31 0.69 60 41 80 0.35 0.70

SMO 71 56 85 0.57 0.78 51 27 76 0.2 0.63 54 31 77 0.06 0.64

3.2. Classification Performance and Discriminating Features

In Phase 2 of the analysis, the classification performance and corresponding top
discriminating features for the various disease comparisons were individually evaluated.

3.2.1. MCCV Classification Performance

Figure 2 shows mean balanced accuracy, sensitivity, specificity, F1 score, and AUC for
five disease comparisons in six sets (A–F) using the top four classifiers with 100 MCCV
repeats. The sets were compared as Set A vs. Set B, Set C vs. Set D, and Set E vs. Set F for
all five disease comparisons. The non-uniform number of samples in different sets, (e.g.,
Sets C & D in CS & Set E & F in PPGL) does not validate a direct metric comparison among
them, however, it was useful in evaluating the prominent discriminating features in a given
disease comparison based on sex and age.

In Set A and Set B, the highest accuracy (~82%) was observed for CS vs. PHT with SL
and LMT. The corresponding F1 score and AUC were 0.8 and 0.9 respectively. On the other
hand, RF provided the highest specificity (~92%) in CS vs. PHT (Set A). Although EHT
vs. PHT had a low accuracy (~54%) and specificity (16%), it still was able to achieve high
sensitivity (~93%) using SL in both Set A and B. The corresponding F1 score and AUC were
0.9 and 0.7 respectively. For ALL vs. ALL, SL and LMT achieved higher accuracy (~60%)
and specificity (~80%) in comparison to LB and RF. Amongst the two sets, Set A provided
better performance for all five metrics irrespective of the classifier used. As earlier in CS
vs. PHT, both SL and LMT provided better performance for PA vs. PHT in comparison to
RF and LB. For PPGL vs. PHT, LB and RF outperformed LMT and SL. Overall, there is no
notable difference in any of the metrics values within Set A and Set B. This shows that age
and sex did not appear as significant features in metabolites-based hypertension classifica-
tion. In Set C vs. Set D, bifurcation based on patients’ sex, higher accuracy was observed
for CS vs. PHT in Set D (~73%) compared to Set C (~64%). However, the specificities for
Set D were lower than Set C. Also, the corresponding sensitivities for Set D were higher
than those compared to Set C. For EHT vs. PHT, PA vs. PHT, and PPGL vs. PHT, Set C
had consistently higher accuracies than Set D except for a few classifiers in PPGL vs. PHT.
The sensitivities for EHT vs. PHT, PA vs. PHT, and PPGL vs. PHT were higher for the
female set (Set D) in comparison to the male set (Set C). The accuracies, sensitivities, and F1
scores for All vs. All were very low for both sets, however, the corresponding specificities
were high.
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(MCCV repeats).

Next, Set E was compared to Set F, where higher accuracies and AUC were observed
for younger patients (Set F) only for CS vs. PHT. For other disease combinations, older
patients (Set E) had higher accuracies. The specificities for CS vs. PHT and PPGL vs. PHT
were higher for Set F than Set E, but opposite in the case of all other disease combinations.
Overall, higher sensitivities were observed for EHT vs. PHT in Set F than Set E.

3.2.2. Discriminating Features

Figure 3a shows the list of important metabolites (in green) and metabolite ratios
(in pink) with the most common on top and used >50 times during MCCV for various sets
within EHT vs. PHT disease classification. C18:1 and C18:2 were the two most prominent
features for almost all sets except Set C. Almost similar features were selected for Set A
and B. However, for Set C and D, Orn, Orn/Arg, and C9 were not selected for Set D, while
C3-DC (C4-OH) was not selected for Set C. Notably, C9 was prominently selected only in
Set C and not any other Set. In the case of Set F, three metabolites (C16, SM C16:0, and PC
ae C32:2) were selected, which did not appear as prominent in any of the other Sets. On the
other hand, Set E Spermidine was selected along with C18:1, C18:2, and Orn.
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Figure 3. (a) Heatmap showing the number of times a feature (metabolites or its ratios) was selected
for EHT vs. PHT disease comparison in different sets (A–F). (b) Feature ranking for Set A in EHT vs.
PHT disease comparison.

Figure A1 in Appendix A shows a combined summary list of all features used for
classifying the remaining disease combinations for all given sets (Set A–F).

Figure 3b shows rank details of selected features during 100 MCCV repeats for EHT
vs. PHT disease classification based on Set A. Metabolite C18:2 was selected during all
100 MCCV repeats and ranked as second for 32 times, third for 55 times followed by 11 and
2 times in position four and four, respectively. Similarly, C18:1 was selected 99 times,
however, it was ranked first 31 times and second 55 times, followed by 11 and 2 times.
This indicates that although C18:2, it was selected more times than C18:1. However, still
C18:1 was ranked higher 31 times in comparison to C18:2. In the case of Orn, Orn/Arg,
and lysoPC, of C18:2, they are selected as 81, 72, and 59 times, respectively. Amongst the
three, Orn was ranked higher consistently (rank third and fourth) and therefore should be
considered more important due to its higher ranking. The ranking of all selected features
and their frequency of selection during 100 MCCV thus provides a robust evaluation of the
prominent discriminating features in disease classification. The corresponding results for
the other four disease comparisons were shown in Appendix A (Figures A2–A5).

3.3. Final Model Training and Testing

In Phase 3 of the ML pipeline, the training set based on the list of selected features (from
Phase 2) is used to train the best classifier (from Phase 1). Table 3 shows the classification
results on the test set for the five disease combinations using the best-performing classifier.
It also shows the distribution of the reduced feature set along with the balanced accuracy,
sensitivity, specificity, F1 score, and AUC. CS vs. PHT provided the best classification
(balanced accuracy: 83%, sensitivity: 75%, specificity: 92%) on the test set using the LMT
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classifier with a reduced set of 22 features (16 metabolites and 5 metabolite ratios and sex).
Similarly, for EHT vs. PHT, 92% specificity was achieved although balanced accuracy, and
specificity was 74% and 57%, respectively.

Table 3. Classification results for disease comparisons showing balanced accuracy, sensitivity, speci-
ficity, F1 score, and AUC for the test set (Phase 3). It includes the breakdown of features and highlights
whether age and sex were selected amongst them.

Disease
Comparisons Classifier

Features Used B.
Accuracy

(%)

Sensitivity
(%)

Specificity
(%)Age

Included?
Sex

Included?
No of

Metabolites
No of

Metabolite Ratios Total F1 AUC

PA vs. PHT SL 5 5 6 3 9 73 71 75 0.8 0.7
CS vs. PHT LMT 5 4 16 5 22 83 75 92 0.8 0.8

PPGL vs. PHT LB 5 5 13 2 15 78 80 75 0.8 0.8
EHT vs. PHT RF 5 5 10 1 11 74 57 92 0.7 0.8
ALL vs. ALL LMT 4 5 10 4 15 61 42 81 0.4 0.7

In terms of age and sex as features, it is evident that age and sex were only selected
for ALL vs. ALL and CS vs. PHT respectively and were not used for the training of the
remaining three disease combinations’ classifiers.

Finally, Table 4 shows the confusion matrix for the classification using the test set for
CS vs. PHT disease combination. The values in the diagonal position show the number
of correctly classified patients. For example, for CS vs. PHT, 6 CS and 11 PHT patients
were correctly classified; however, in total three patients were misclassified. Tables A7–A10
show the confusion matrices for the test sets of the remaining four disease combinations.

Table 4. Confusion matrix showing the actual and predicted labels for CS vs. PHT.

Reference

CS PHT

Prediction
CS 6 1

PHT 2 11

4. Discussion

The application of machine learning has recently facilitated the use of high-throughput
omics technologies in healthcare. In this study, we investigate the use of targeted metabolomics
data for classifying and distinguishing the various subtypes of endocrine and primary
hypertension using machine learning methods. From a clinical perspective, discriminating
individuals with endocrine hypertension from primary hypertension is a challenging
task that often involves intensive medical work-up and imaging protocols (See details in
Appendix B). However, this study used a data-driven approach for identifying metabolomic
patterns that can provide further insight into different hypertension subtypes without any
other a priori information.

We investigated a range of disease comparisons in different sets using three feature
selection methods and eight classifiers with the MCCV approach. Amongst the three feature
selection methods, Boruta outperformed others in terms of classification performance as it
is a wrapper-based method that detects interactions between features during selection. It
evaluates the most optimal subset of features using its importance scoring mechanism [41].
On the other hand, CFS is a filter-based method that does not consider relationships between
features during selection. Out of eight, four classifiers (LB, LMT, RF, and SL) provided
better performance amongst all while using the same selected metabolomic features.

Our current results correspond well with our preliminary results [6] and also provide
a more detailed and insightful feature ranking for each disease classification. For example,
in the case of EHT vs. PHT, the common top metabolomic features were C18:2, C18:1, C9,
C16, ornithine, spermidine, and ornithine/arginine, pointing to our possible association of
acylcarnitine and bioamine metabolic disturbances in the pathogenesis of the morbidity and
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cardiovascular complications in patients with EHT, as discussed in our previous work [6].
Similarly, for other disease comparisons, distinct discriminating features emerged that
can be further investigated. In particular, elevated long-chain acylcarnitines (e.g., C18:1,
C18:2) have been observed in patients with heart failure and have been shown to play a role
in disrupting cardiac electrophysiology and cell contractility as well as being associated
with insulin resistance and diabetes mellitus. The identified amino acids and biogenic
amines alterations in patients with endocrine hypertension may be related to increased
inflammation and endothelial dysfunction, all of which may contribute together to the
increased cardiovascular morbidity observed in EHT compared with PHT, as discussed pre-
viously [6]. Further studies are needed to clarify whether these findings are associated with
a common pathogenic mechanism or are related to EHT. Instead of using a standardised
ML pipeline, this work utilised a novel approach that used three phases to find a robust list
of selected metabolomic features, which were used for model training and then evaluated
on the test set. The selected features are not considered just based on their random repeat
frequency but rather on the number of times a feature is selected along with its ranking,
which provides greater insight into the most discriminating features. It was interesting to
identify the variation in selected features based on the age of patients. For example, in the
case of EHT vs. PHT disease combination, alongside common features (C18:1 and C18:2), a
different combination of unique features was selected for patients younger than 50 years
of age.

This machine learning-based study had few limitations. Firstly, class imbalance was
observed in the acquired dataset. For example, fewer CS patients, since it is a rarer disease.
To balance the classifier training, a downsampling approach was adopted, which led
to the loss of samples from the majority class. This strong natural disbalance between
different aetiologies can be improved in future by using advanced oversampling techniques
such as Synthetic Minority Over-sampling TEchnique (SMOTE) [42] for ML model training.
Secondly, due to the unavailability of an independent test dataset, the dataset was randomly
partitioned into a training/testing dataset for MCCV (with 100 random repeats) approach
for an extended validation. The reported results are based on the limited size of the cohort.
Further, sensitivity for discrimination was not optimal in all subgroup analyses; it was
best in discriminating EHT from PHT. Thus, while we were able to confirm the results
of our previous work that our approach could potentially be used as a pre-screening test
to identify patients requiring further endocrine testing by a specialist, namely the EHT
group [6], it is not suitable for distinguishing the different endocrine entities from each
other due to its low sensitivity (Figure 2). Finally, within our study, we did not differentiate
between distinct aetiologies of the hormonal excess in the EHT cases (e.g., adrenal or
pituitary cause of cortisol excess, bilateral or unilateral PA).

While clinical presentation, further diagnostic procedures, and treatment will be
dependent on the final diagnosis, the overall aim of this study was to evaluate the use of
metabolites and their ratios for developing a prediction tool to distinguish the endocrine
hypertension forms from primary hypertension as a first screening step in the evaluation
of hypertension patients. The subtype classification of the aetiology of hormonal excess
in endocrine hypertension cases was considered out of scope at this stage, however, in
future studies, it would be interesting to analyse the potential of metabolomics for this
purpose. Another study (currently in progress) with a larger prospective dataset would
further help in understanding the top discriminating features and allow refinement of the
machine learning-based modelling. In future prospective studies, it will be also of interest
to analyse the role of metabolomics as a prognostic factor e.g., medical treatment outcome
or risk of cardiovascular events in patients with arterial hypertension. Similarly, the most
recently studied TroponinT, which is a widely used diagnostic marker for cardiac ischemia,
has shown a promising role as a marker for predicting cardiac surgery outcomes [43].



Metabolites 2022, 12, 755 11 of 20

5. Conclusions

This study classified different hypertension subtypes using targeted metabolomics and
their ratios. The ML pipeline comprised of five disease comparisons and nine supervised
learning algorithms that used different age and sex-based sets. Amongst all the different
disease combinations, CS vs. PHT and EHT vs. PHT provided the highest specificity
(92%) on the test dataset using LMT and RF classifiers respectively. The evaluation showed
promising results with a reduced set of features, which can be further investigated in the
future on a much larger prospective dataset.
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Appendix A. Tables and Figures

Table A1. List of metabolites measured with the AbsoluteIDQ® p180 Kit GAC, Helmholtz Zentrum
München. Note: Complete list of the 188 metabolites. With the asterisk (*) are marked the 33
metabolites excluded after selection as described in the method section. With the double-asterisk
(**) are marked 8 metabolites included in the analyses for which only the variance between batches,
but not within the batches, were only slightly above the predetermined cutoff prior normalization.
Abbreviations: Cx:y indicates the lipid chain composition, where “x” is the number of carbons and
“y” the number of double bonds. LysoPC, lysophosphatidylcholine, PC, phosphatidylcholine; a, acyl;
aa, diacyl; ae, acyl-alkyl; SM, sphingomyelin; SM(OH), hydroxysphingomyelin.

Acylcarnitines (40)

Abbreviation Full-Name Abbreviation Full-Name

C0 Carnitine C10:1 Decenoylcarnitine
C2 Acetylcarnitine C10:2 Decadienylcarnitine
C3 Propionylcarnitine C12 Dodecanoylcarnitine

C3:1 ** Propenoylcarnitine C12:1 Dodecenoylcarnitine
C3-OH * Hydroxypropionylcarnitine C12-DC ** Dodecanedioylcarnitine

C4 Butyrylcarnitine C14 Tetradecanoylcarnitine
C4:1 Butenoylcarnitine C14:1 Tetradecenoylcarnitine

C4-OH (C3-DC) Hydroxybutyrylcarnitine C14:1-OH Hydroxytetradecenoylcarnitine
C5 Valerylcarnitine C14:2 Tetradecadienylcarnitine

C5:1 * Tiglylcarnitine C14:2-OH * Hydroxytetradecadienylcarnitine
C5:1-DC * Glutaconylcarnitine C16 Hexadecanoylcarnitine
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Table A1. Cont.

C5-DC
(C6-OH) *

Glutarylcarnitine
(Hydroxyhexanoylcarnitine) C16:1 Hexadecenoylcarnitine

C5-M-DC ** Methylglutarylcarnitine C16:1-OH Hydroxyhexadecenoylcarnitine
C5-OH

(C3-DC-M) *
Hydroxyvalerylcarnitine
(Methylmalonylcarnitine) C16:2 * Hexadecadienylcarnitine

C6 (C4:1-DC) * Hexanoylcarnitine
(Fumarylcarnitine) C16:2-OH * Hydroxyhexadecadienylcarnitine

C6:1 * Hexenoylcarnitine C16-OH * Hydroxyhexadecanoylcarnitine
C7-DC ** Pimelylcarnitine C18 Octadecanoylcarnitine

C8 Octanoylcarnitine C18:1 Octadecenoylcarnitine
C9 Nonanoylcarnitine C18:1-OH * Hydroxyoctadecenoylcarnitine

C10 Decanoylcarnitine C18:2 Octadecadienylcarnitine

Amino Acids (21)

Abbreviation Full-Name Abbreviation Full-Name

Ala Alanine Lys Lysine
Arg Arginine Met Methionine
Asn Asparagine Orn Ornithine
Asp Aspartate Phe Phenylalanine
Cit Citrulline Pro Proline
Gln Glutamine Ser Serine
Glu Glutamate Thr Threonine
Gly Glycine Trp Tryptophan
His Histidine Tyr Tyrosine
Ile Isoleucine Val Valine

Leu Leucine

Monosaccharides (1)

Abbreviation Full-Name

H1 Sum of Hexoses (including
Glucose)

Glycerophospholipids (90)

Abbreviation Full-Name Abbreviation Full-Name

lysoPC a C14:0 PC aa C34:1 PC aa C42:0 PC ae C38:2
lysoPC a C16:0 PC aa C34:2 PC aa C42:1 PC ae C38:3
lysoPC a C16:1 PC aa C34:3 PC aa C42:2 PC ae C38:4
lysoPC a C17:0 PC aa C34:4 PC aa C42:4 PC ae C38:5
lysoPC a C18:0 PC aa C36:0 PC aa C42:5 PC ae C38:6
lysoPC a C18:1 PC aa C36:1 PC aa C42:6 PC ae C40:1
lysoPC a C18:2 PC aa C36:2 PC ae C30:0 PC ae C40:2
lysoPC a C20:3 PC aa C36:3 PC ae C30:1* PC ae C40:3
lysoPC a C20:4 PC aa C36:4 PC ae C30:2 PC ae C40:4

lysoPC a C24:0 ** PC aa C36:5 PC ae C32:1 PC ae C40:5
lysoPC a C26:0 * PC aa C36:6 PC ae C32:2 PC ae C40:6
lysoPC a C26:1 * PC aa C38:0 PC ae C34:0 PC ae C42:0
lysoPC a C28:0 ** PC aa C38:1 * PC ae C34:1 PC ae C42:1
lysoPC a C28:1 ** PC aa C38:3 PC ae C34:2 PC ae C42:2

PC aa C24:0 * PC aa C38:4 PC ae C34:3 PC ae C42:3
PC aa C26:0 PC aa C38:5 PC ae C36:0 PC ae C42:4
PC aa C28:1 PC aa C38:6 PC ae C36:1 PC ae C42:5
PC aa C30:0 PC aa C40:1 PC ae C36:2 PC ae C44:3

PC aa C30:2 * PC aa C40:2 PC ae C36:3 PC ae C44:4
PC aa C32:0 PC aa C40:3 PC ae C36:4 PC ae C44:5
PC aa C32:1 PC aa C40:4 PC ae C36:5 PC ae C44:6

PC aa C32:2 ** PC aa C40:5 PC ae C38:0
PC aa C32:3 PC aa C40:6 PC ae C38:1

Sphingolipids (15)

Abbreviation Full-Name Abbreviation Full-Name

SM (OH) C14:1 SM C18:0 SM (OH) C22:1 SM (OH) C24:1
SM C16:0 SM C18:1 SM (OH) C22:2 SM C26:0 *
SM C16:1 SM C20:2 SM C24:0 SM C26:1 *

SM (OH) C16:1 SM C22:3 * SM C24:1

Biogenic Amines (21)

Abbreviation Full-Name Abbreviation Full-Name

Ac-Orn Acetylornithine PEA * Phenylethylamine

ADMA * Asymmetric
dimethylarginine cis-OH-Pro * cis-4-Hydroxyproline

alpha-AAA alpha-Aminoadipic acid trans-OH-Pro trans-4-Hydroxyproline
Carnosine * Carnosine Putrescine Putrescine
Creatinine Creatinine SDMA * Symmetric dimethylarginine

DOPA * DOPA Serotonin * Serotonin
Dopamine * Dopamine Spermidine Spermidine
Histamine * Histamine Spermine * Spermine

Kynurenine * Kynurenine Taurine Taurine
Met-SO Methionine sulfoxide total DMA Total dimethylarginine

Nitro-Tyr * Nitrotyrosine
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Table A2. Details of randomly partitioned training and testing datasets.

Data Disease
Sex Age Distribution

Total Count
Male Female Patient Age ≥ 50 Patient Age < 50

Training (80%)

CS 3 29 17 15 32
PA 45 41 33 53 86

PPGL 27 34 39 22 61
PHT 29 18 22 25 47

Testing (20%)

CS 1 7 5 3 8
PA 13 8 9 12 21

PPGL 6 9 9 6 15
PHT 11 1 1 11 12

Table A3. Mean balanced accuracy, sensitivity, and specificity for EHT vs. PHT disease comparison
using various classifiers with all features, CFS, and Boruta feature selection methods.

EHT vs. PHT

Classifier
All CFS Boruta

B. Acc
(%)

Sen
(%)

Spec
(%) F1 AUC B. Acc

(%)
Sen
(%)

Spec
(%) F1 AUC B. Acc

(%)
Sen
(%)

Spec
(%) F1 AUC

IBk 61 83 39 0.84 0.61 62 80 44 0.82 0.62 58 81 36 0.82 0.58
J48 58 83 34 0.83 0.56 56 85 27 0.83 0.58 56 86 25 0.84 0.63
LB 61 89 33 0.87 0.74 59 89 30 0.86 0.74 59 88 29 0.86 0.75

LMT 62 91 33 0.87 0.76 56 93 18 0.87 0.70 55 92 19 0.86 0.69
NB 70 62 78 0.74 0.76 72 61 83 0.74 0.78 68 56 81 0.70 0.76
RF 53 99 7 0.89 0.77 58 94 22 0.88 0.75 57 90 24 0.86 0.74
SL 61 91 31 0.88 0.76 55 94 16 0.87 0.70 54 93 16 0.87 0.69

SMO 62 91 33 0.87 0.62 50 100 0 0.89 0.50 50 100 0 0.89 0.50

Table A4. Mean balanced accuracy, sensitivity, and specificity for CS vs. PHT disease comparison
using various classifiers with all features, CFS, and Boruta feature selection methods.

CS vs. PHT

Classifier
All CFS Boruta

B. Acc
(%)

Sen
(%)

Spec
(%) F1 AUC B. Acc

(%)
Sen
(%)

Spec
(%) F1 AUC B. Acc

(%)
Sen
(%)

Spec
(%) F1 AUC

IBk 82 73 91 0.77 0.82 83 74 91 0.78 82 0.87 80 94 0.84 0.87
J48 76 73 78 0.71 0.75 74 70 78 0.68 74 0.74 71 78 0.69 0.74
LB 75 66 84 0.69 0.85 76 66 86 0.70 85 0.76 67 85 0.70 0.85

LMT 83 75 91 0.79 0.92 82 74 90 0.77 91 0.82 74 90 0.78 0.92
NB 81 74 88 0.76 0.87 81 67 95 0.75 91 0.83 70 96 0.78 0.94
RF 77 60 95 0.70 0.92 78 65 91 0.71 89 0.79 65 92 0.73 0.90
SL 83 75 91 0.79 0.92 82 74 90 0.77 91 0.82 74 90 0.78 0.91

SMO 87 82 93 0.84 0.87 81 69 93 0.76 81 0.83 70 95 0.78 0.83

Table A5. Mean balanced accuracy, sensitivity, and specificity for PA vs. PHT disease comparison
using various classifiers with all features, CFS, and Boruta feature selection methods.

PA vs. PHT

Classifier
All CFS Boruta

B. Acc
(%)

Sen
(%)

Spec
(%) F1 AUC B. Acc

(%)
Sen
(%)

Spec
(%) F1 AUC B. Acc

(%)
Sen
(%)

Spec
(%) F1 AUC

IBk 63 72 55 0.73 0.63 60 66 54 0.69 0.60 62 69 55 0.71 0.62
J48 63 72 54 0.73 0.64 64 70 59 0.73 0.66 65 72 59 0.74 0.67
LB 65 76 53 0.76 0.74 65 78 52 0.76 0.75 65 76 54 0.76 0.75

LMT 67 77 56 0.77 0.78 66 75 57 0.75 0.77 66 76 57 0.76 0.77
NB 69 57 81 0.68 0.75 73 59 88 0.70 0.79 72 56 87 0.68 0.78
RF 62 88 37 0.79 0.78 65 78 52 0.77 0.76 64 77 51 0.76 0.75
SL 67 77 56 0.77 0.78 66 75 57 0.76 0.78 67 76 58 0.76 0.78

SMO 70 77 62 0.78 0.70 59 84 35 0.76 0.59 58 88 29 0.78 0.58
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Table A6. Mean balanced accuracy, sensitivity, and specificity for PPGL vs. PHT disease comparison
using various classifiers with all features, CFS, and Boruta feature selection methods.

PPGL vs. PHT

Classifier
All CFS Boruta

B. Acc
(%)

Sen
(%)

Spec
(%) F1 AUC B. Acc

(%)
Sen
(%)

Spec
(%) F1 AUC B. Acc

(%)
Sen
(%)

Spec
(%) F1 AUC

IBk 62 54 71 0.61 0.62 66 63 70 0.67 0.66 65 64 66 0.67 0.65
J48 66 71 62 0.71 0.66 66 72 60 0.71 0.67 68 73 63 0.72 0.69
LB 70 74 67 0.74 0.78 71 75 67 0.75 0.80 74 79 69 0.78 0.82

LMT 71 73 69 0.75 0.79 69 73 66 0.73 0.76 69 74 65 0.73 0.76
NB 73 67 79 0.73 0.81 73 64 82 0.72 0.81 70 59 80 0.68 0.79
RF 73 84 62 0.79 0.83 73 79 67 0.77 0.81 74 79 68 0.78 0.82
SL 72 74 70 0.75 0.79 70 73 67 0.73 0.76 70 74 65 0.73 0.77

SMO 74 79 68 0.78 0.74 71 74 68 0.75 0.71 70 73 66 0.74 0.70

Table A7. Confusion matrix showing the actual and predicted labels for PA vs. PHT.

Reference

PA PHT

Prediction
PA 15 3

PHT 6 9

Table A8. Confusion matrix showing the actual and predicted labels for PPGL vs. PHT.

Reference

PPGL PHT

Prediction
PPGL 12 3
PHT 3 9

Table A9. Confusion matrix showing the actual and predicted labels for EHT vs. PHT.

Reference

EHT PHT

Prediction
EHT 25 1
PHT 19 11

Table A10. Confusion matrix showing the actual and predicted labels for ALL vs. ALL.

Reference

CS PA PHT PPGL

Prediction

CS 2 2 0 5
PA 0 6 2 0

PHT 2 10 8 3
PPGL 4 3 2 7
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100 100 87 62 73 72
100 100 50 16 78 35
50 50 99 42
33 37 18 1 4
7 6 49 3 2

20 19 13 1 74
48 50 2 6 42
70 67 21 10 4
66 65 6 41 4
38 32 1 10 17 6
72 74 14 29 41
16 16 8 10 2
29 26 4
20 14 30
3 6 1 32

36 39 3 17 5 20
60 61 56 11 3
58 13 82

6 7
18
8
1

1
3 2 4 5 2 7

34 3
3 1 2 1 5

1
1

1 1 5
3 1 7 7
2 2 11

2 4
1 1 3

3
1

12 13 20
11 10 4 14 3
1 1 5
9 10 3 2

1
11 10 3 2 17
15 19 12
16 17 7
2 1 1

1

11 9 2
2 3 1 4
1 1

1 3
5 6 1 2

1 2 1 4
2

1
3
3
7

5 2 9 1
4 6 6
3 5 5
3 5 2 3
7 5 3 4 4
5 4 7 2 4
5 5 1
1 3 2 3

3 1
1 1 1
1 2 1

1 3

1 2 1 7
1 1

1
1

1

2 2 4
1 1 1 2 2

2 1 1

2 2 3
3
2
1

2 3

1

2 2
1 2

1
1

1 2

1

1 1

1

1

1

8
10

1 2 2 12
7 4 14 11

19
1 1 14 1
9 8 13 26
1 1 3 25
1 2 1 23 2

17 8 3 9
9 9 13

16
1

1 1 49 3
3

1
1

63 67 67 1 43 7
37 35 4 9 1 2
24 18 1 4 2
58 60 2 3 12 4
37 37 1 12 15
30 33 1 2 30
36 40 32 84
25 27 9 49
2 5 1

20 25 6 8 11 1
22 19 2 1 5
12 17 75
3 1 11 7
5 3 5 3 14

35 34 27 3 89
38 38 13 28
5 4 20

6 2 11

100 100 31 100 42 100
100 100 95 93 100
95 97 32 24 23 38

100 100 31 63 37 82
22 24 100 8 9
9 8 2 16
4 6 31 18

76 77 4 69 11
65 67 2 55

3
8 3

4
2

2 82
11 1
21

26 26 4 35
10

23 25 34 25 1
15 11 1 18 7
7 4 24 10 1

26 22 33 52 2
42 50 16
18 29 10 2
26 23 9
9 10 11

1 2 1
3 3 15 29

2
4

35
20

5 5 2 2
1

1

3
8

6 1

1 2 14 1
2 6 10 1 2

10
2

1
1 1

3 2
6 7 1 6 6

1
1 2

2
4

1 3 2

3 3 2
1 8

9
8

2 3 1 5

3
1 4 5

5 1
1 9

2

3

1 2 1 3
1 4 3
1 2

1
1

1 1 1
1

1

2 2 2
1 2
1 4 2

3
1

1

1 2

1

1
1

1
1

2
1
1
1

3 1

4 2

1

1 3
1

7 9 2 18

3
3 1 8

1 1
1 2 29

6 1 1
11 13

20 20 36 6 2 19
7 5 31 12

1 44 1
36 1

8 4 70

1 1

100 100 28 81 99 45
94 97 27 100 9
79 78 78 10 22
59 58 89 18 20
97 95 50 48 10 43
74 70 30 35
75 74 1 5 65
88 87 31 2 96
77 68 9 5 90
46 42 54 100
95 5 70

100 100 95 76 64 81
99 100 35 73 80 79
81 79 100 5 62 3
72 82 65 15 14
34 37 93 21 1
43 46 24 51 52 3
22 21 12 1 4
29 25 2 6 14 46
22 28 8 3 3
59 52 5 23

3 1
39 36 13 11 35 2
1 5 6 5 1
1 1 1

24 26 47 59
1 2

8
22 23 72 14

1 49
1 71

3 55
5

2 7 13 5 12 1
4

1 7

2 4 4 1
1

3 1 1
1 1

11 8 18 8
1 5

14
4

3 6 1 3
1 1

1
1

1
1

8 4 1 18
13

2 1 19
3 2 2 15
5 7 10

3 13
1 3 1
6 4 1 2
4 2

1
1

1 1 3 1
2 3
1 2

1

2 6 3
8

1
1 2 1

1 1

2 6
5

2
1

2 1
1 2
1 4
1 3

1
1

1 1

1
1 2 1

1 3

2
1
2

1 1
1

1 1
1

1

2 3

7
2

1

1
1 18 3

22
1

17

1

1 1

1 4
23 22 13 5
8 12 2 8

1
1 4
1 1 1

3 2
3 1

10 14 20 1 3

1
8 9 9 1 7 1
3 1 1

2 1 2 1

100 100 100 100 100 81
98 97 23 68 99 15
50 44 97 56 1
90 91 60 4 59 3
74 77 91 1 45 13
38 37 34 10 97
78 75 8 44 87 2

1 17 6
1 7

6 8

1 2 3
1

2 2 1
2 4 1 14 37

28 26 2 61 5 12
1 14 39

14 11 22 7
30
21
3

4 2 38 1
5 3 3 6 1 3

1 1

14 9 28 1
2 59

3 5 3 16
1

12 10 2

4
1 6
2 1 13 2

2
2

2 1 1
1 3

1
2

3 5 10
1 5
8 11 1 8
8 7 2
2 4 9 12

3 2 2 2

1

6 1

2 1
1 1 1

1

4 2 5
1 8 1

1 1
2 2

1 1
1 3
1 1 1 1 6

1

2
1

2

1
2 1

3

4 1
3
2

1 1 1

1
1

1 1 1

1

6
5
3

13

3 2
1

8

15 13 25 1 2 8
18 23 5 1

1
1 1
7
2

1

1
39 36 34 5 42 26
30 34 21 2
35 34 11 6 27 7

1 4 6

1
1

3
1 2 2
9 9 3
2 2 7

1
2 9

1
3 2 6

98 95 49 38 16 60
100 100 82 98 91 85
41 47 96 1 31
79 75 14 11 48

65 2 2
37 37 4 64 96
64 72 24 6 35 4
84 84 36 1 44 15
33 35 31 4
97 97 5 12 44 46
65 73 46 9 54 1
44 43 26 2 50
66 64 6 22 6 5
47 42 9 4 3 3
47 54 20 21

1
3 4 4 1

11 18
1 1

6

3 1 6 58
1

11 13 1
1 6

8 6 4 2 1
4 2 2

18 14 3 21
22 22 12 43

29
23

10 12 5 4 1
8 7

9 14 3 2 8 2
21 23 3 1
19 19 5 5
9 9 28 1

2 9

1
8 5 8 6

1
9

1
3

2 1
9
4

2
7 7 8 1 1
3 2 1 5
2 3 13
6 5 1 11 6

13 2

1 2 1 3
1

1
1

1 1

2

3 4 1 1 4

1
1

2 2
1 1

1

1
2 3

1
1 1

2 1 2

1

2
3
3 1
2

1
1 2

2
2

1
1
1

1

1

6
1 1

1

1

1 2
1

1 16

1

9 9 1 6 16
8 34

3 3 38
1

1 38 1
3 2 24

1 1 1 1 8

2 1
1 3

3
2 1

1

11 15 7 9
9 8 1 9

1
1

1 1
3 4 8 1 3

63 66 7 33 10 12

1 2 8

1 23 3
1

7 14 3

ALL vs ALL CS vs PHT EHT vs PHT PA vs PHT PPGL vs PHT

C18:2
C18:1
Orn
Orn / Arg
C9
Spermidine
Spermidine / Putrescine
SM C18:1
Met−SO / Met
lysoPC a C18:2
PC ae C34:2
PC ae C42:0
SM C18:0
PC aa C32:2
C2
C16
PC aa C42:4
Age
C3−DC (C4−OH)
SM C16:1
PC ae C32:2
SM C16:0
Arg
Glu
Ala
total DMA
lysoPC a C16:1
PC ae C38:3
SM C20:2
Met−SO
Cit / Arg
Total DMA / Arg
PC ae C44:4
lysoPC a C28:1
Non essential AA
C3
PC ae C36:3
C7−DC
C16:1
PC aa C40:6
PC aa C38:6
PC aa C34:2
lysoPC a C18:0
PC ae C38:1
SM C24:0
PC aa C36:2
C14:1−OH
PC aa C36:3
SM (OH) C24:1
SM (OH) C22:1
PC ae C44:3
PC ae C42:2
Gln
PC aa C42:2
Ac−Orn
C14:1
Ser
PC aa C36:4
PC aa C30:0
PC ae C30:0
Putrescine
PC aa C42:5
PC aa C40:5
Val
PC aa C34:4
Tyr
AAA
PC ae C40:3
Phe
C18
Ile
lysoPC a C17:0
PC aa C32:1
SM C24:1
PC aa C34:3
Total AA
C12
PC ae C38:2
alpha−AAA
PC aa C28:1
PC ae C44:6
PC ae C40:4
C12−DC
lysoPC a C20:3
Trp
Asn
PC ae C30:2
PC aa C36:1
PC ae C40:6
PC aa C40:3
Glucogenic AA
PC aa C38:3
PC ae C40:1
PC ae C40:2
PC aa C36:6
PC ae C36:5
C5
C10:2
BCAA
Lys
PC aa C42:0
Fisher ratio
Creatinine
SM (OH) C14:1
PC ae C38:6
Met
PC ae C40:5
PC aa C38:0
C0
(C2+C3) / C0
PC aa C26:0
PC aa C34:1
PC ae C32:1
PC ae C44:5
PC aa C36:0
PC ae C38:0
Leu
Essential AA
PC ae C38:4
PC ae C34:0
PC aa C32:3
C4
PC ae C42:3
PC ae C34:1
PC ae C36:0
t4−OH−Pro
PC ae C38:5
PC ae C36:4
C5−M−DC
SM (OH) C22:2
SM (OH) C16:1
PC ae C42:4
PC aa C38:4
PC aa C42:6
PC ae C36:2
PC aa C40:4
C16:1−OH
Taurine
C12:1
PC ae C42:1
C4:1
lysoPC a C28:0
C14:2
Cit
C10:1
PC ae C36:1
C8
lysoPC a C18:1
C10
CPT−I ratio
PC aa C40:1
PC aa C42:1
PC aa C40:2
PC ae C34:3
His
Putrescine / Orn
Thr
Cit / Orn
Tyr / Phe
lysoPC a C24:0
C3:1
lysoPC a C16:0
Asp
Pro
H1
lysoPC a C14:0
lysoPC a C20:4
Gender

S
et

 A

S
et

 B

S
et

 C

S
et

 D

S
et

 E

S
et

 F

S
et

 A

S
et

 B

S
et

 C

S
et

 D

S
et

 E

S
et

 F

S
et

 A

S
et

 B

S
et

 C

S
et

 D

S
et

 E

S
et

 F

S
et

 A

S
et

 B

S
et

 C

S
et

 D

S
et

 E

S
et

 F

S
et

 A

S
et

 B

S
et

 C

S
et

 D

S
et

 E

S
et

 F

Small Metabolites Features Frequency

0 50 100

Figure A1. Combined heatmap showing the number of times featured for Sets A–F, showing all
metabolites (in green) and metabolite ratios (in pink) selected for all 5 disease combinations.
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Appendix B. Patient Recruitment and Diagnostic Work-Up

Patient data and suitable plasma specimen following overnight fasting were avail-
able from patients from 11 centres of the ENSAT-HT consortium (http://www.ensat-ht.eu
accessed on 1 June 2022). Included were patients with the diagnosis of arterial hyperten-
sion either by use of antihypertensive medication or if untreated confirmed by daytime
ambulatory blood pressure monitoring, or home blood pressure monitoring, with blood
pressure higher or equal to 135 mmHg for systolic blood pressure and/or higher or equal
to 85 mmHg for diastolic blood pressure. Patients were classified as primary or essential
hypertension (PHT) after exclusion of primary hyperaldosteronism (PA), cathecholamin-
excess due to pheochromocytoma/paraganglioma (PPGL) and Cushing syndrome (CS)
(adrenal and pituitary), and other forms of secondary hypertension (renal disease, pharma-
cological cause and obstructive sleep apnea syndrome). CS was diagnosed in the presence
of two abnormal test results of any of the following tests: urine free cortisol (UFC; at
least two measurements), late-night salivary cortisol (two measurements), 1 mg overnight
dexamethasone suppression test (DST), and longer low-dose DST (2 mg/d for 48 h). The
diagnosis (PA, PPGL) was made according to the current guidelines for screening and man-
agement of the specific diseases [44,45]. Only patients with PHT, CS, PA, and PPGL were
included in the study. Excluded were also patients with low-renin hypertension, unclear
diagnosis, pregnancy, and severe comorbidities (e.g., heart failure, chronic kidney dis-
ease, active malignancy). All patients provided written consent to participate in the study
according to the protocol approved by the Ethics Committee of each participating centre.

Appendix C. Metabolite Quantification by AbsoluteIDQTM p180 Kit

For the LC-part, compound identification and quantification were based on sched-
uled multiple reaction monitoring measurements (sMRM). The method of AbsoluteIDQTM

p180 Kit has been proven to be in conformance with the EMEA-Guideline [46], which
implies proof of reproducibility within a given error range. Sample preparation and
LC-MS/MS measurements were performed as described in the manufacturer in manual
UM-P180. Analytical specifications for LOD and evaluated quantification ranges, further
LOD for semiquantitative measurements, identities of quantitative and semiquantitative
metabolites, specificity, potential interferences, linearity, precision and accuracy, repro-
ducibility, and stability were described in Biocrates manual AS-P180. The LODs were set
to three times the values of the zero samples (PBS). The assay procedures of the Abso-
luteIDQTM p180 Kit as well as the metabolite nomenclature have been described in detail
previously [20,21]. Sample handling was performed by a Hamilton Microlab STARTM

robot (Hamilton Bonaduz AG, Bonaduz, Switzerland) and a Ultravap nitrogen evaporator
(Porvair Sciences, Leatherhead, UK), beside standard laboratory equipment. Mass spectro-
metric analyses were done on an API 4000 triple quadrupole system (Sciex Deutschland
GmbH, Darmstadt, Germany) equipped with a 1200 Series HPLC (Agilent Technologies
Deutschland GmbH, Böblingen, Germany) and a HTC PAL auto sampler (CTC Analyt-
ics, Zwingen, Switzerland) controlled by the software Analyst 1.6.2. Data evaluation for
quantification of metabolite concentrations and quality assessment was performed with
the software MultiQuant 3.0.1 (Sciex) and the MetIDQTM software package, which is an
integral part of the AbsoluteIDQTM Kit. Metabolite concentrations were calculated using
internal standards and reported in µM.
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