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Abstract

We propose algorithms for developing (1) a rigid (constrained) and (2) a �exible planetary gearbox model.
The two methods are compared against each other and advantages/disadvantages of each method are
discussed. The rigid model (1) has gear tooth reaction forces expressed by Lagrange multipliers. The
�exible approach (2) is being compared with the gear tooth forces from the rigid approach, �rst without
damping and second the in�uence of damping is examined. Variable sti�ness as a function of base circle
arc length is implemented in the �exible approach such that it handles the realistic switch between one
and two gear teeth in mesh. The �nal results are from modelling the planetary gearbox in a 500 kW wind
turbine which we also described in Jørgensen et al. (2013).

Keywords: multibody, gearbox, teeth, matlab

1 Introduction

Of increasing interest are wind turbine gearboxes, be-
cause new wind turbines are large and gearboxes are
one of the most expensive and critical components.
Many researchers/engineers consider not only the gear-
box itself but also the system it is part of. By analysing
the whole drivetrain, it is possible to simulate the dy-
namics of bearings, gear wheels, shafts and genera-
tors, i.e. stators and rotors. In Peeters et al. (2006)
three types of multibody wind turbine drivetrain mod-
els have been implemented using the multibody soft-
ware package DADS. It is found that adding bearing
�exibility is important for an accurate prediction of the
eigenfrequencies.

The disadvantage of modelling a large system, i.e.
the whole drivetrain or even the dynamics of the whole
windturbine, is that the complexity increases. Mod-
elling large systems should not be an issue, when us-

ing most commercial multibody software tools. The
commercial multibody software package Adams/View
(MSC software) is used in Haastrup et al. (2011) to
investigate best practices for gearbox bushings in wind
turbine drive-trains. Other people combine their own
gear programs into commercial tools. This approach is
made in Rasmussen et al. (2012); Hansen et al. (2011)
where an aeroelastic tool is used to model a bigger sys-
tem, i.e. a whole wind turbine including �exibility of
the blades and tower with turbulent in�ow.

In this article we present algorithms that are imple-
mented in Matlab. Focus is on the planetary gearbox
without modelling the system it is part of, i.e. how the
gearbox is connected to motors/generators etc. The
models are presented with results using simpli�ed and
realistic loads. For the latter, we look at a planetary
gearbox of a 500 kW wind turbine and use loads cal-
culated by the aeroelastic and industry-accepted tool
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FLEX5 Øye (2001). For additional details of the exper-
imental validation of this particular 500 kW gearbox,
including the rigid multibody approach, see Jørgensen
et al. (2013).

1.1 Multibody modelling

Introductions to the �eld of planar and spatial multi-
body dynamics are given in Nikravesh (1988); Shabana
(1989); Haug (1989); Géradin and Cardona (2001);
Amirouche (2004). A mechanical system is de�ned
in Nikravesh (1988) as a collection of bodies or links,
which relate one body to the other. Bodies in these
systems are connected by joints and/or force elements
like actuators, springs and dampers. Mechanics is de-
�ned as the branch of analysis which involves the study
of motion, time and forces on objects. The classical
approach to solving the equations of motion for a con-
strained mechanical system is to solve equations for an
index 3 Di�erential Algebraic Equation (DAE) system
(see e.g. Hairer and Wanner (1996)). The n di�er-
ential equations coupled with m algebraic equations is
written Mq̈−ΦT

qλ = g, Φq =
∂Φ

∂q

Φ(q, t) = 0

(1)

Where M ∈ Rn×n is the mass/inertia matrix, q ∈
Rn is a vector of cartesian coordinates, Φq ∈ Rm×n is
the Jacobian of the Φ(q, t) ∈ Rm kinematic constraint
equations, λ ∈ Rm are the the Lagrange multipliers
and g ∈ Rn are the external body forces applied in the
global reference system, a�ecting the origin of the local
coordinate system of corresponding bodies.
The local coordinate system is located in the center

of mass, because this is a straightforward way to ensure
a time-independent constant inertia/mass matrix. The
vector Φ(q, t) is a symbol of general rheonomous con-
straints if at least one of the constraints is explicitly
time-dependent. Geometrical constraints are used to
�x the gears of the planetary gearbox, hence Φ(q) = 0,
which are scleronomous or time-independent. An ex-
ample of a gear constraint for external gears is

Φgear ≡ ρiθ̇i + ρj θ̇j = 0 (2)

where the radii for gear wheel pairs i and j are given
by ρ and θ̇ denotes the angular velocity of both gear
wheels Nikravesh (1988). However, this constraint does
not provide any realistic reaction forces because there's
no coupling to translational degrees-of-freedom (DOF).
Both methods described in this article provide a real-
istic coupling between rotational (for transforming the
torque between bodies) and translational DOFs.

Various techniques for solving (1) were developed
and are described by many authors in e.g. Nikravesh
(1988); Ascher and Petzold (1998); Jalon et al. (1995);
Gear (1971). Constraints are expressed at accelera-
tion level, to form equations of motion from the DAE-
system (1) into an ODE in the form given by Nikravesh
(1988): [

M −Φq
T

Φq 0

]{
q̈
λ

}
=

{
g
γ

}
(3)

By a proper selection of initial position, velocity
(q, q̇), constraints (Φ) and forces and moments on the
right-hand-side (RHS), the equation system (3) can
be solved for the accelerations q̈. A time-integration
scheme such as e.g. Runge�Kutta can then yield the
velocity- and position- vector of coordinates (q, q̇) for
all timesteps.

2 Methods

Both rigid and �exible multibody dynamics are specif-
ically concerned with analysis of bodies undergoing
large displacements (both rigid body motion and elas-
tic deformations). For general formulations of �exible
multibody systems see Shabana (1997); Géradin and
Cardona (2001) and references therein.
The following illustrates how to calculate the length

between points from two di�erent objects/bodies, using
two di�erent local coordinate systems i and j:

l = rj + Ajs
′
j − ri −Ais

′
i, A2D =

[
cos θ − sin θ
sin θ cos θ

]
(4)

where r is a vector in the global system to the local
coordinate center, A is a transformation matrix from
local to global coordinates and s′ is a vector in the local
coordinate system. The primed vectors are all in the
local coordinate system, e.g. ω′ and vectors without a
prime, e.g. ω, r or s are de�ned in the global coordinate
system.

2.1 Connecting bodies, rigidly and �exibly

With a kinematical description of a joint, i.e. using
a constraint formulation, no �exibility exists in the
joint and the joint acts as a rigid connection. But
if the constraint (Figure 1a) is removed and replaced
by a force pair (Figure 1b) then the e�ect of how e.g.
springs and dampers a�ect the two connecting bod-
ies can be programmed. The mathematically most
simple joint between bodies i and j is a spherical
joint, which is illustrated in Figure 1a and described
as Φs : ri+Ais

′
i−rj−Ajs

′
j = 0. The constraint equa-

tions ensures that two points measured from body i
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and j coordinate systems coincide because l = 0. From
optimization theory, Farkas lemma guarantees the ex-
istence of Lagrange multipliers λ Bae and Haug (1988)
which can also be interpreted as �ctive forces or mo-
ments. The spherical joint can be transformed into a
�exible connection by removing the joint and replacing
it with a force element.

x

y

ri

θi

rj

s′i
s′j

θj

ξi

ηi

ξj

ηj

rp

(a) Spherical joint: A rigid/contrained connection. At the
joint, l = 0, see equation (4). The angle θ is measured
from global (x, y) to local reference of frame (ξ, η).

x

y

ri

θi

rj θj

ξi

ηi

ξj

ηj

Fj

Fi

ni

nj

Si,x

Sj,y

Si,y

Sj,x

(b) Joint removed and added a force element (spring,
damper or actuator). Bodies i and j are pulled to-
wards each other by the forces Fi and Fj, acting at a
distance of si and sj.

Figure 1: Illustration of di�erence between a rigid and
a �exible connection for bodies i and j.

When a rigid multibody model is changed into a
model where some of the constraints are formulated
by use of force elements (springs/dampers/actuators),
the idea is to remove constraints from Φ and instead
formulate equations that explicitly describe the forces

or moments acting on the a�ected bodies. This re-
duces the number of rows in Φq and λ. Replacing con-
straints with force element contributions means that
the g-vector in (3) is modi�ed. For instance body i
could have an external force vector of gi = [fx, fy, n]Ti
where fx and fy are the sum of horizontal and ver-
tical external body forces, while n is the sum of mo-
ments. A force element as shown in Figure 1b can
be inserted by changing the external force vector, e.g.
gi = [fx+Fi,x, fy+Fi,y, n−si,yFi,x+si,xFi,y]Ti , which
could be illustrated by either inserting a translational
actuator, a spring or a damper. The forces Fi and
Fj are moved to the center of the local reference of
frame together with the torque which is calculated as:
n = s× F. Extending the formulation to include ele-
ment/body �exibility is described in e.g. Pedersen and
Pedersen (1998); Shabana (1989). Another description
of �exibility e�ects in multibody systems is given in e.g.
Huston and Wang (1994), which describe approaches
for connecting rigid bodies for elastic straight and taper
segments subject to extension, torsion and bending.

2.1.1 Implementation details of using force pairs

If a spring is inserted between the two bodies, the
corresponding joint constraint should obviously be re-
moved. The individual extra RHS force contribution
to the g-vector in (3) becomes the scalar value of
∆F =k(l− l0), where l is the deformed spring length
cf. Equation (4), l0 is the undeformed spring length
and k is the spring sti�ness. Body i and j would sense
the opposite force of each other as shown in Figure
1. Revolute joint connections between bodies can be
transformed into �exible damper/spring connections
using the approach described above. The damping
force is ∆F = dl̇ where d is the scalar damping coe�-
cient and the derivative of the length calculated from
Equation (4) is

l̇2D = ṙj + θ̇jBjs
′
j − ṙi − θ̇iBis

′
i (5)

where: B =

[
− sin θ − cos θ
cos θ − sin θ

]

2.1.2 Constraints used for both models

Consider Figure 2 which shows the two fundamentally
di�erent approaches in this article for constructing a
multibody planetary gearbox model with realistic re-
action forces. The rigid approach works using Lagrange
multipliers or constraints and the �exible approach
works by using linear springs and dampers with de-
tails described in section 2.3. Linear in the sense that
the gear tooth penetration depth is measured along a
line acting normal to the tooth surface.
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The constraints which constitute the kine-
matic/geometric/algebraic equations of the model
must rigidly connect bodies and ensure that: The
center of most bodies is �xed to either the ground,
i.e. sun, ring and carrier or to another body i.e. the
planets. The planetary carrier connects ground with
other objects such as the planets themselves. When
more than two planets are used, the center of the
planetary carrier is also the center of mass of the sun
or the ring gear (these mass centers are coinciding).
For only a single planet, the carrier is modelled simply
as a bar with one end �xed to the global coordinate
system origin while the other end is �xed to the
planet. The mass center for a carrier connecting only
a single planet will be in the middle of the endpoints
of the carrier. Gear constraints make the wheels in
the planetary gearbox rotate correctly. Focus in this
article is on comparing the two di�erent approaches
for modelling a planetary gearbox.

2.2 Rigid model

Figure 2 shows two versions of a 6-body multibody
model, i.e. consisting of sun, ring, 3 planetary gears
and a planetary carrier. With 3 coordinates per body
(2D) there are 18 DOF. All 6 bodies are �xed at their
mass center to either ground or to the planetary car-
rier. In 2D this requires 12 equations. In addition the
ring gear cannot rotate. Left is 5 DOFs but with 4
gear constraints it means that once torque is applied
to either body, all bodies will behave appropriately.
The gear tooth normal, radial and tangential forces

are shown in Figure 3a, which also shows the path of
contact as the tangent between two base circles (the
green line). When two gear teeth mesh the distance
from gear centers to anywhere on the contact line,
varies along the yellow line. The gear loads depend
on the transmitted torque and base radius.
Both illustrations in Figure 3 show that as the con-

tact point (red dot in the illustrations) moves, the radii
to the contact point continuously change. Despite that
the radii of the contact point change, a fundamental
property of involute gears is that the normal gear tooth
force is always the torque divided by the base gear ra-
dius ρb, i.e. Fn = M/ρb.
The e�ect of vibrations, size of teeth, material errors,

lubrication, number of teeth in mesh at the same time
etc Klit et al. (2009) have no in�uence in this model.

2.2.1 Description of rigid gear constraint

The problem when modelling a planetary gearbox with
the simple gear constraint (2) is that only the torque is
transferred through the rotational coordinates. There
is lack of gear tooth forces, thus no physical reaction

1

2

3

(a) Rigid planetary gearbox model with 4 gear constraints
and 1 rotational DOF. Planet 1 transfers torque
to/from the sun gear. Planets 2 and 3 can only have 1
gear constraint (either to sun or to ring gear) to pre-
vent an over-constrained system.

1

2

3

(b) Flexible planetary gearbox model � all planets are �ac-
tive�. For illustrative purposes, the spring and damper
is shown in the tangential direction. This is merely a
projection of the real spring tooth forces which work
in the tooth normal direction.

Figure 2: Di�erence between rigid and �exible 6-body
multibody planetary gearbox model.
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α

ρb Fr

Ft

Fn

(a) Base (ρb), working and addendum circles. Path of con-
tact is yellow and the green line is tangent to the two
base circles (see e.g. Klit et al. (2009)).

90◦ + α

90◦ − α

ACW
n vr

ACCW
n vr

vr

(b) Radial direction unit vector (seen from the left
gear) vr and two rotation-direction dependent
unit vectors Anvr (CW/CCW).

Figure 3: Illustration of gear tooth force components
Fn, Fr and Ft, pressure angle α etc.

force contribution exists in λ, only torque. By consid-
ering an idealized gear, the constraint (2) is changed
into the following non-holonomic gear constraint

(Anvr)
T
[(

ṙi + ρiAiω̃i
′
vr

)
−
(
ṙj − ρjAjω̃j

′
vr

)]
= 0
(6)

where vr is a unit vector between the center of both
gears (see Figure 3b), An is a transformation matrix
(see eq. (4)) that depends on direction of rotation
(CW/CCW) such that the matrix product (Anvr) be-
comes a unit vector in the tooth surface normal direc-
tion as shown in Figure 3b. The gear constraint (6) is a
dot product between a projection direction vector and
a velocity vector of the red tooth contact point shown
in Figure 3. This constraint equation gives a reaction
force contribution because it includes all translational
and rotational coordinates of involved bodies. It also
has a physical meaning in the tooth surface normal
direction. The constraint equation (6) is written com-
pletely out for 2D:

Φ̇2D : (An · vr)
T

[({
ẋi
ẏi

}
+ ρi(ωiv̂r)

)
−({

ẋj
ẏj

}
− ρj(ωjv̂r)

)]
= 0 (7)

where the unknown translational coordinates are
x, y and the rotational coordinate is ω while v̂r is
a rotated tangential unit vector. If the tangential
unit vector vr = {vx, vy}T is rotated 90◦ it becomes
v̂r = {−vy, vx}T . It is easy to see that with DOF for
(ẋ, ẏ, ω), all DOF's are involved, which is important
because it means that the internal reaction forces are
treated correctly (see e.g. Jørgensen et al. (2013)).

2.2.2 Equations of motion

Equation (3) is solved for the accelerations q̈ in each
timestep and it is seen that Φqq̈ = γ. The Jacobian
submatrix Φq holds coe�cients for the acceleration
terms. It is therefore necessary to collect coe�cients
for q̈ into the Jacobian (Φq). By using v̇ = ω × v,
Equation (7) di�erentiated becomes Equation (8).
From this equation, LHS coe�cients to the Jacobian

matrix and RHS contributions to γ can be found.

2.3 Flexible model

All the rigid model constraints are kept in the �exible
version of the multibody code except for the gear con-
straints that are removed. Body centers still need to be
centered and �xed to each other correctly. This means
that e.g. the planetary carrier is still �xed to planet
gear wheel centers and sun/ring gear wheel centers are
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Φ̈2D : (Anv̇r)
T (ṙi + ρiωiv̂r) + (Anvr)

T
(
r̈i + ρiω̇iv̂r + ρiωiˆ̇vr

)
−(Anv̇r)

T (ṙj − ρjωjv̂r)− (Anvr)
T
(
r̈j − ρjω̇jv̂r − ρjωj ˆ̇vr

)
= 0 (8)

Fi

Fj

βi 180◦ − βj

xj = θjρj

xi = θiρi

−xj

xi
dg

kg

Figure 4: Illustration of spring kg and damper dg between two gears for a simpli�ed spring/damper system.
Gear tooth force is perpendicular to teeth surface.

still �xed to the ground. All gear constraints are re-
moved and replaced by force elements, as depicted in
Figure 1. A linear spring and damper element are im-
plemented as shown in Figure 4 and the objective is to
�nd an algorithm that calculates ∆F or the tangential
projection of it, which multiplied by the radius ρ is the
torque.

2.3.1 Description of force element algorithm in the
�exible model

For every planet in a planetary gearbox (e.g. see Fig-
ure 2), gs/p contain the sun/planet gear tooth forces
and moments and gp/r holds the planet/ring gear tooth
forces and moments. Every pair of sun/planet and
planet/ring forces and moments consists of spring and
damper forces/moments such that g = g0 + gk + gd

where g0 is the initial body forces and torque, gk is the
forces and torque from springs and gd is the force and
torque from dampers (in the global reference of frame).
The total vector of external forces and moments for all
bodies is modi�ed such that g = g0 +

∑
k gs/p + gp/r

for k number of planets. This approach makes it easy
to add/remove planets in a systematic way because the
algorithm is generic and modular.

From Figure 4 it is seen that for a 1D spring and
damper, forces are proportional to either a tangential
distance interpreted as the penetration depth measured
from the equilibrium position or to an angular veloc-

ity di�erence (the time derivative di�erence in rotation
speeds). These equations have to be changed a bit, in
order to calculate the forces in higher dimensions, i.e.
a transformation matrix is added. A 2D model is suf-
�cient to illustrate the concept as this can easily be
implemented in a 3D model. First the tangential tooth
penetration depth is found, then the time derivative
di�erence is found and �nally the spring and damping
coe�cients are multiplied and the force contributions
are added together.

2.3.2 Calculation of forces and moments

The driver/carrier angle θd is the angle from the global
x-axis to the local x-axis of the coordinate system for
the �rst planet. This angle has a corresponding rota-
tion matrix Ad. Similarly, As/p(φ) is a transformation
matrix for the angle from the center of the sun to the
center of the current planet in mesh. Example: For the
planetary gearbox in Figure 2, every sun/planet angle
φ in As/p(φ) is: φ1 = 0◦, φ2 = 120◦ and φ3 = 240◦

(insert the angles in eq. (4) to obtain each of the trans-
formation matrices). There will be a loop that sums
up all force contributions for all involved planets. The
gear tooth penetration depth lp is now given by the
projection

lp = AdAs/pvn

[
ρbi(θi − θ0i − θd) + ρbj (θj − θ0j − θd)

]
,

(9)
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where the unit tooth surface normal vector is:

vn =

{
sin(α)
cos(α)

}
(10)

which is illustrated together with the pressure angle
in Figure 5.

α
vn

Figure 5: Surface normal vector in the penetration di-
rection as a function of the pressure angle α.

In equation (9), θ0 is the initial angle at t = 0 sec-
onds. Normally θ0 = 0◦ and if this is not the case
it means that the gear will start rotated in a position
that is not the equilibrium position. Additionally, ρb
is the base circle radius for the involved body. The
penetration depth is associated with the sti�ness prop-
erties (constant/linear/non-linear etc) of the gear(s).
The �velocity di�erence� is associated with the damp-
ing properties of the gear(s) and can be written

l̇p = AdAs/pvn

[
ρbi(ωi − ωd) + ρbj (ωj − ωd)

]
(11)

The absolute forces in cartesian coordinates are pro-
portional to the spring/damping coe�cients so Fk =
klp and Fd = dl̇p. Reaction forces are opposite of each
other for bodies i and j.

Torque If v =

{
x
y

}
then v̂ =

{
−y
x

}
is the same

vector rotated 90◦ CCW and the tangential direction
is expressed as a function of the radial unit vector:
vt = v̂r. Therefore the scalar tangential gear tooth
force is the dot product: F k+d

t = v̂Tr (Fk +Fd) and the
absolute torque is M = ρwFt where ρw is the working
circle radii. For gear wheels i and j the change on the
RHS, gFlex = gk + gd becomes

gFlexi =

{
−klp − dl̇p
−ρwi

F k+d
t

}
, gFlexj =

{
klp + dl̇p
−ρwj

F k+d
t

}
(12)

The equations (12) are calculated twice as many
times as there are planets, i.e. both for the sun/planet
and for the planet/ring connections and all the force
contributions are added together.

2.4 Sti�ness model with variable
(multiple) teeth in mesh

The above assumptions rely on a simpli�cation, where
the multibody code knows nothing of the current num-
ber of gears in mesh since the sti�ness is given as a con-
stant. Improved realism and accuracy of the �exibly-
connected model can be obtained by letting the sti�-
ness be a function of the rotation angles of the gears.
The sti�ness coe�cients of gear teeth are generally
non-linear and a function of the point of contact and
the size of the contact load, see e.g. Pedersen and Jør-
gensen (2014). The meshing sti�ness is the combined
sti�ness of two gears in contact. The number of gear
teeth pairs in contact is also changing, usually between
one or two pairs in contact. This leads to discontinu-
ities in the meshing sti�ness. The point of contact on a
gear tooth can be given as a function of the base circle
arc length as shown in Pedersen and Jørgensen (2014).
The base circle arc length s1 is also shown in Figure 6.
In the present paper we use the same method as

described in Pedersen and Jørgensen (2014) for ex-
tracting the sti�ness as a function of the base circle
arc length s1. The FEM package Comsol Multiphysics
Multiphysics (1998-2012) is used for obtaining the sti�-
ness coe�cients. Other methods for including tooth
sti�ness are found in Ebrahimi and Eberhard (2006);
Ziegler et al. (2006).
Figure 7a and 7b show respectively the sun/planet

and planet/ring sti�ness. As soon as two teeth are in
mesh at the same time, the sti�ness almost increases
to the double. The �gures can also be used to calculate
the contact ratio, i.e. the average number of teeth in
mesh at the same time. It can thus directly be seen
that the planet/ring contact ratio is higher than the
sun/planet contact ratio. Introducing this kind of sti�-
ness into the multibody program causes small �shock
impulses� which can decay fast or slow, depending on
the amount of damping added.
In order to obtain sti�ness expressions we need to

relate the rotation of the involved gears to the de�ned
sti�ness variations. The gear rotations are de�ned by
the variables θ1 and θ2. Since these two rotations are
unconstrained we de�ne a mean value. The sti�ness
is de�ned relative to the base circle arc length of gear
number one, i.e. a mean value θ̄1 is de�ned as the mean
value of the actual θ1 and the value θ

∗
1 (the latter being

the value that θ1 would have relative to the θ2 value if
a gear constraint was used instead):

θ̄1 =
θ1 + θ∗1

2
, θ∗1 =

−rb2
rb1

θ2 (13)

We also need to relate the change in angle ∆θ1 to
the change in base circle arc length ∆s1 of the contact
point, using the simple linear relation
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Figure 6: Base circle arc length, s1 and s2 with involute curve shown on gear 1. The load from gear 2 acts
along the line of action. Base circle radii are denoted rb and working pressure angle is αw. Angle from
center to contact points are denoted β.

∆s1 = rb1∆θ1 (14)

An o�set-adjustment ∆θa is the relationship be-
tween the mean angle and the sti�ness lookup-values.
The �nal relationship between gear angle and base cir-
cle arc length is

θs = θ̄1 + ∆θa −N 2π

Z1
, θs ∈

[
0 ;

2π

Z1

]
(15)

s1 = θsrb1 + s1min (16)

where s1min
is the minimum value of the arc length for

the speci�c set of gears.

2.4.1 Without pro�le shift

For the given con�guration used here the o�set of
the angles is the same for all planets. The o�set-
adjustment for the sun/planet is:

∆θa =
−π
2Zs

+ tan(αws/p
)− αws/p

+ arctan

(
s1min

ρbs

)
(17)

The o�set-adjustment for the planet/ring is:

∆θa =
π

2Zp
+ tan(αwp/r

)− αwp/r
+ arctan

(
s1min

ρbp

)
(18)

2.4.2 Including pro�le shift

Inclusion of pro�le shift, x1, means that all planets
interact with the sun and the ring at di�erent places,
i.e. the discontinuity in the sti�ness does not happen
at the same time for all three planets (see Figure 12a).
An individual o�set for all gear contacts is:

• Sun/planet:

∆θas/p =
1

Zs

(π
2
− 2x1s/p tan(αws/p

)
)
−

tan(αws/p
) + αws/p

+
s1,min
ρbs

− arctan
s1,min
ρbs

(19)

Pl.1: ∆θa = ∆θas/p

Pl.2: ∆θa = ∆θas/p + 2π
3

Pl.3: ∆θa = ∆θas/p −
2π
3

• Planet/ring:

∆θap/r =
1

Zp

(π
2
− 2x1p/r tan(αwp/r

)
)
−

tan(αwp/r
) + αwp/r

+
s1,min
ρbp

− arctan
s1,min
ρbp

(20)

Pl.1: ∆θa = ∆θap/r

Pl.2: ∆θa = ∆θap/r −
2π
3

Pl.3: ∆θa = ∆θap/r + 2π
3
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Figure 7: Sti�ness as a function of the base circle arc
length s (cyclic dependence).

3 Results

Some simple test cases have been made using a �ctive
planetary gearbox with 20 teeth on the sun gear, 40
teeth on each of the planet gears and (20 + 2 · 40)=100
teeth on the ring gear. No pro�le shift is used. This
teeth combination is speci�cally suitable for running
simulations with parameter variations based on the
number of planets. For the teeth to mesh properly,
the absolute number of teeth on the sun and ring gears
should be added together and also be a multiple of the
number of planets. The sum of 120 teeth therefore
means that parameter variations can be made for 1, 2,
3 and 4 planets and the angle between all planets are
equally distributed, i.e. 360◦ divided by the number
of planets. This can be seen in Figure 8. The results
section is concluded with results for a real planetary
gearbox operating in a 500 kW wind turbine.

x

y

Figure 8: Illustration generated by Matlab implemen-
tation (both rigid and �exible model).

3.1 Gearbox with 1-4 planets

The two types of models described above are imple-
mented and compared against each other. The num-
ber of bodies is equal to the number of planets plus the
planetary carrier and sun and ring gears.

Figure 8 is shown with 3 planets although there is
space for 4 planets. Input torque is put on the plan-
etary carrier i.e. the driver. The carrier angle θd is
measured from the global x-axis to the local x-axis
of the carrier. This local carrier x-axis is aligned in
the direction of the center of the �rst planet. The
�rst planet always starts at 0◦, then the next planet
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Time [s] Torque [Nm]
0-2 -4
2-5 0

(a) Carrier torque for simple example with k = 1000
N/m (unrealistic low example) and d = 0 Ns/m.

Body Izz Desc.
1 0.123 Sun
2 1.97 Planet
3 77.1 Ring
4 0.15 Carrier

(b) The mass/inertia matrix [kg·m2].

Gearbox model
Planets Rigid Flexible ε [%]

1 -100.92◦ -100.25◦ 0.66
2 -58.73◦ -58.40◦ 0.56
3 -41.17◦ -40.96◦ 0.51
4 -31.69◦ -31.54◦ 0.47

(c) The �nal carrier angle θd (t = 5 sec) and relative
di�erence ε in % between the two models.

Table 1: Matlab input parameters, description of bod-
ies and results.

is located at 360◦/p for p number of planets and sub-
sequent planets are placed evenly distributed in the
CCW direction. The initial position of the carrier is
0◦ so θd(t = 0) = 0◦ and a number of 5 second simula-
tions are carried out with driver input torque as shown
in Table 1a. The unrealistic low sti�ness of 1000 N/m
was mostly for being able to �see� the tooth penetration
from the Matlab model in �real-time� with cycle times
around 1-2 seconds. The mass moments of inertia of
all bodies are shown in Table 1b. Additional planets
are added by repeating mass properties of body 2. The
input torque is negative so the carrier will move in the
CW direction and end up in the position as shown in
Table 1c. Without damping and with a constant sti�-
ness coe�cient of 500 [N/m], the deviation between the
rigid and the �exible model is less than 1%, which is
deemed acceptable. The visual inspection of the tooth
penetration phenomenon from the Matlab animation
shows that the model works as expected, with a cyclic
harmonic motion.

3.1.1 Gear tooth forces - rigid vs �exibly-connected
model (1-4 planets)

For the rigid gear constraint, the reaction forces are
already in the gear tooth surface normal direction. For
a dynamic system

Mq̈ = gext + greact ⇒Mq̈−ΦT
qλ = gext (21)

the term −ΦT
qλ yields the reaction forces but only the

gear tooth reaction forces are interesting. The �exibly
connected method does not have Lagrange multipliers
for the gear tooth reaction forces and therefore it is nec-
essary to implement some book-keeping that tracks the
penetration depth and penetration velocity if damping
is included.

Figures 9a� 9d show the gear tooth forces, for pro-
ducing the same results as provided in Table 1c. The
gear tooth force from the rigid model is compared with
the �exible gear tooth forces, given by the expression
v̂Tr (Fk + Fd).

The e�ect of using only a single planet is easy to
understand (see Figure 9a). It can easily be seen that
after 2 seconds the carrier torque is removed and left is
only a simple harmonic motion which without damping
will continue forever (this in�nite harmonic behavior
will become even more clear when the sti�ness is in-
creased by a factor 10 in the following section). By us-
ing numerical integration in Matlab from 0�5 seconds,
it can be seen that the area under the rigid/�exible
sun/planet curves deviates around 5%. The area un-
der the planet/ring curves deviate approx 1%. In other
words, the antiderivative of the gear tooth force curve
is approximately the same in either case.

When using 2 or more planets (�gures 9b- 9d), it is
more di�cult to assess the in�uence of how the rigid
gear constraint behaves in comparison with the �exi-
ble gear connection. In the rigid case, the �rst planet
behaves di�erently from the other planets while in the
�exible case all planets behave equally. This is true as
long as no pro�le shift is used and as long as the initial
rotation error is inexistent. Planets 2-4 have 1 gear
constraint on the sun gear as well as on the ring gear,
causing a single gear tooth reaction force two places.
The �exible model yields gear forces everywhere but
they are the same when no pro�le shift is used and
with the same perfectly aligned initial conditions. For
this reason two subplots are shown for the simulation
with 2-4 planets because the subplot for planet 2 is the
same for all following planets.

When 2 or more planets are used, it is easy to re-
alize that the �exible gear connection is highly recom-
mended in favor of the rigid gear constraint. Physically
the �exible method is more correct when comparing
with the rigid method. However, the latter is easier
to implement, it is faster if the sti�ness is high and
realistic and it does not require any book-keeping at
all.

3.1.2 The e�ect of damping

The sti�ness is now increased by a factor 10 so k = 5000
N/m and the number of planets is chosen to be 3 which
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(a) 1 planet rigid/�exible comparison. The rigid gear con-
straint provides a good �average� for gear tooth force.
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(b) 2 planet rigid/�exible comparison. As shown in Fig-
ure 2, only planet 1 has both gear constraints at
sun/planet and planet/ring.
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(c) 3 planet rigid/�exible comparison. The gear tooth
forces for planets 2 and 3 are the same, when pro�le
shift x = 0.
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(d) 4 planet rigid/�exible comparison. It can be seen that
the rigid gear constraint is a rough inaccurate estimate
of the �exible gear tooth forces.

Figure 9: Gear tooth forces for the rigid vs. �exibly-connected arti�cial planetary multibody gearbox model
with 1-4 planets.
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Gearbox model (3 pl, rigid θd =-41.17◦)
Damping Flexible θd ε [%]

0 -41.127◦ 0.104
10 -41.143◦ 0.067
20 -41.152◦ 0.044
30 -41.157◦ 0.031
40 -41.160◦ 0.023
50 -41.162◦ 0.019
60 -41.164◦ 0.015

(a) The �nal carrier angle θd and relative di�erence ε in
% between the two models, when adding damping.
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(b) Using damping coe�cient, d = 0 Ns/m.
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(c) Using damping coe�cient, d = 30 Ns/m.
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(d) Using damping coe�cient, d = 60 Ns/m.

Figure 10: Gear tooth forces for the rigid vs. �exibly-connected arti�cial planetary multibody gearbox model
for di�erent damping coe�cients.

70



Jørgensen et.al., �Rigid and Flexible Multibody Gearbox Model�

is deemed to be a typical case. Di�erent damping co-
e�cients are added but pro�le shift is not used and
perfect initial rotation angles as described in the pre-
vious section are used again.
Table 10a in comparison with Table 1c shows that

as the sti�ness is increased the relative di�erence be-
tween the two approaches decreases and in addition the
amount of damping has little in�uence on the relative
movement of the carrier angle after 5 seconds. From
basic theory of vibrations it is known that for a 1-DOF
spring-mass system, the natural frequency is

ω =

√
k

m
, k is sti�ness, m is mass. (22)

If the mass is constant and the sti�ness increases by a
factor 10 the natural frequency is expected to increase
by a factor of

√
10 = 3.16 which also seems to be the

case. We can estimate the half period length with k =
500 N/m from Figure 9a- 9d and it is approximately
1.75 seconds. From �gures 10b- 10d the half period
length is approx 0.55 seconds. The ratio between the
two is very close to 3.16, so the theoretical decrease in
period length is con�rmed as we increase the sti�ness
by a factor of 10.
After 2 seconds, Figure 10b shows the in�nite har-

monic motion of the gear teeth penetrating each other.
As long as no damping is included, the gear tooth forces
are oscillating to an amplitude given by the penetration
depth at t = 2 seconds, which is the moment where all
external forces and moments are removed. Only the
inertia of the system keeps the planetary carrier rotat-
ing and since no damping is involved, the energy of the
system is preserved which can be seen by the regular
periodic oscillations.
Figure 10d illustrates the equilibrium condition

where the sti�ness and damping forces �locks up� the
gear teeth so after a while, the gears will end up mov-
ing in a steady and similar way as the rigid model.
With damping gear teeth can rotate while penetrating
each other (otherwise the spring forces would be 0).
By analyzing the forces in the program, it can be seen
that at exactly 2 seconds the gear teeth penetration
depth is not large, but due to inertia, the spring forces
are at a maximum around 2.2 seconds. The damping
forces are almost constant but decrease slightly from
2.2 to 5 seconds. The result is that the sun/planet and
planet/ring gear tooth forces end up at around ±2.3 N
while the planetary gearbox rotates as steady as in the
rigid model with small (or no) acceleration jumps.
Equilibrium with no external forces mean that if the

sun/planet force is 2.3 N then the planet/ring force
should be -2.3 N and if this is not the case, the planet
will rotate in a non-ideal way which is seen as a kind
of rotation, which the rigid model would never do.

This behavior of using damping coe�cients was fully
expected. The bigger the damping coe�cients is, the
more the �exibly-connected planetary gearbox will be-
have like a rigid model and this is something that must
be taken into account for real practical examples like
those described in the following section.

3.2 Analysis of the planetary gearbox in a
500 kW wind turbine

A real planetary gearbox has much higher sti�ness and
damping values than those analyzed in the previous
section. For the sake of modelling a real planetary
gearbox, it is not realistic to model the gear tooth sti�-
ness as a constant value. The gear tooth sti�ness from
Figure 7a (sun/planet) and Figure 7b (planet/ring) is
used in the following, for modelling a planetary gear-
box with 20, 35 and 91 teeth for respectively the sun,
planet and ring gears. The pro�le shift is xs = 0.582,
xp = 0.419 and xr = −0.840, respectively and for in-
put, realistic loads from Jørgensen et al. (2013) are
used. The rotor torque is used on the planetary carrier
and the generator torque is used on the sun gear, i.e.
their values are inserted to the RHS of Equation (3).
Figure 11 shows some realistic input loads that to

some extent have been veri�ed by using the aerody-
namic FLEX5 software tool Øye (2001) and comparing
with experimental data Jørgensen et al. (2013).
Because the sti�ness for this model is much higher

than before, the timestep has to be much smaller,
which increases computation time and consequently
the total simulation time is rather short. It must how-
ever be long enough to be able to remove the �rst part
of the simulation results due to turbulent (wind) in-
�ow, giving the model time to �nd something that can
be regarded quasi-steady. In other words, it takes a
while before inertia forces and accelerations are in a
semi-equilibrium state.

3.2.1 Results from the 500 kW planetary gearbox
model

In order to save computation time the initial velocity
of the planetary carrier, connected directly to the ro-
tor, is set to 2.86 rad/s or 27.3 RPM which can be
seen from FLEX5 simulation results. The torque on
the carrier and sun is then interpolated using Figure
11 and in the beginning of each timestep the g-vector
(1) on the RHS of the equations of motion is updated
accordingly, causing some acceleration �uctuations due
to turbulence.
Table 2 is the mass matrix for our realistic 500 kW

wind turbine. As the gears rotate, the base circle arc
length changes and because pro�le shift is used, the
switch between 1 and 2 gears in mesh will happen at
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(a) Rotor/main shaft torque in a real 500 kW wind turbine
in a wind �eld with a mean speed of 10 m/s.
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Figure 11: Realistic input torque for the realistic multi-
body planetary gearbox model .

Body Ixx = Iyy Izz Desc.
1 145 1173 Sun
2 122 12.6 Planet 1
3 163 0.8 Ring
4 1759 3000 Carrier
5 122 12.6 Planet 2
6 122 12.6 Planet 3

Table 2: More realistic mass/inertia matrix [kg·m2].
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(a) Example of implementation of switch between 1 and 2
teeth in mesh, for the �rst 0.3 seconds.
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(b) Sti�ness variation of one planet due to switch between
1 and 2 teeth in mesh, based on (a).

Figure 12: 6-body multibody model and demonstra-
tion of realistic sti�ness model using pro�le
shift. If the base circle arc length is below
a threshold value, 2 teeth are in mesh and
otherwise only a single teeth is in mesh.
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di�erent times for all individual planets. The base cir-
cle arc length from Equation (16) as a function of time
is shown in Figure 12a, which also shows that the sun
rotates faster than the planets. Figure 12b shows the
actual corresponding sti�ness values of the planetary
gearbox, based on Figure 7 for one of the planets. Fig-
ure 13 shows the linear spring and damping forces to-
gether with the sum of these.
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Figure 13: The damping force is direction-dependent
as the spring forces are (blue color for x,
green color for y). Damping forces increase
as the spring forces increase and vice versa
(d = 20 · 103 Ns/m was used). It can be
seen that spring forces are dominant � single
planet forces are shown.

Figure 14 shows a comparison of the rigid vs. the
�exible approach for this particular planetary gearbox
using two di�erent damping coe�cients. It is inter-
esting to note that the mean values are almost iden-
tical and approximately 1/3 of the rigid gear tooth
forces. This corresponds fully to the fact that Figure 2
only shows 1 sun/planet gear constraint with the rigid
model (because no more constraints can be added). By
experimenting it can be seen that higher damping de-

creases the amplitude of the gear tooth forces, because
then gear teeth are not allowed to penetrate each other
to the same extent.

Finally it becomes interesting to look at the torque
from accelerations and moment of inertia of e.g. the
sun, shown in Figure 15. It can be seen that the stan-
dard deviation of the torque becomes small the closer
we get to the �rigid� case, which is equivalent to in-
creasing the damping. In other words, damping pre-
vents gear tooth penetration.
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 d=10000 Ns/m (std=29424 Nm)

d=20000 Ns/m (std=21708 Nm)

d=30000 Ns/m (std=11850 Nm)
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Rigid (std=26 Nm)

Figure 15: Inertia term for the sun gear (Msun = Izz θ̈)
using di�erent damping coe�cients, for the
realistic planetary gearbox in a 500 kW
wind turbine.

4 Conclusions

Two fundamentally di�erent approaches for modelling
multibody planetary gearboxes have been described
and implemented in Matlab. The �rst approach is a
completely rigid model, where bodies are connected
through a rigid gear constraint that allows reaction
forces easily to be extracted, from the vector of La-
grangian multipliers.

The second approach also uses rigid bodies, but
the gear constraints are exchanged with springs and
dampers. Comparing the two approaches shows that
gear tooth reaction forces must be in good agreement
between each other because when running a simple ex-
ample with 1-4 planets and no damping, the total an-
gular movement of the carrier seems to be the same
for all cases. The deviation of the position of the �-
nal carrier angle after 5 seconds is found to be less
than 1 %. These results could probably also be ob-
tained by using a simpler rigid gear constraint such as
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Desc. F [kN]
Rigid p1/r 277
Rigid s/p1 -272
Flex. p1/r 93
Flex. s/p1 -91

(a) Average gear tooth forces. Fi-
nal carrier angle is 409.636◦ us-
ing the �exible approach.
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(b) Gear tooth forces using d = 2 · 104 Ns/m.
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(c) Average gear tooth forces. Fi-
nal carrier angle is 409.637◦ us-
ing the �exible approach.
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(d) Gear tooth forces using d = 4 · 104 Ns/m.

Figure 14: Gear tooth forces using rigid/�exibly connected bodies for modelling a real planetary gearbox using
pro�le shift and realistic sti�ness/damping parameters. Final carrier angle is 409.622◦ by using the
rigid approach, meaning that the di�erence is negligible.
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φiθ̇i = −ρj θ̇j from Nikravesh (1988), but then it would
not be straightforward to obtain the gear tooth reac-
tion forces, which is the scope of the present paper.
As we increase the sti�ness, the natural frequency

behaves well accordingly to the theory of harmonic mo-
tion for springs. By adding more and more damping,
the gears in the planetary gearbox clearly rotate more
and more like they would do, if implemented using a
rigid gear constraint. Overall the results of the two
methods are described as:

• The rigid gear constraint is generally very fast, but
experiments with 1-4 planets show that the gear
tooth forces are only a �rough� estimate of the real
planetary gear tooth forces. A major drawback
with this method is that only one of the planets
can have a gear connection to both the sun and
the ring, meaning that not all planets will feel the
same gear tooth forces when operating under the
same ideal initial conditions. Also fatigue calcu-
lations are inaccurate because the force variations
are too small.

• The �exibly-connected method is more realistic
and should therefore be used for accurate calcu-
lations. However, a major drawback is that by
using realistic sti�ness and damping parameters
the time-step decreases signi�cantly and therefore
the simulation time becomes much longer than by
using the rigid approach. The method is suitable
for fatigue as well as other detailed calculations.

For the �exible method we describe a method which
implements gear tooth sti�ness depending on the ro-
tation angles of the two gears in mesh. This method
is also capable of taking pro�le shift into account, for
making more realistic simulations. Intuitively it makes
sense, that the mesh sti�ness is higher when 2 teeth
are in mesh compared to when only a single tooth is in
mesh. Simulations show that with no pro�le shift and
�perfect� initial conditions, such as initial gear body ro-
tation angles, all planets experience the shift between
1 and 2 gears in mesh at the same time. But with
pro�le shift, the tooth clash when switching between 1
and 2 teeth in mesh, is shifted such that it happens at
di�erent times for di�erent planets.
Finally, we present simulations for a model of a real

planetary gearbox in a 500 kW wind turbine. For the
planetary gearbox with 3 planets in the 500 kW wind
turbine, the gear tooth forces using the �exible model
are close to 1/3 of those by using the rigid model. We
demonstrate that the standard deviation of the mo-
ment from accelerations and moment of inertia be-
comes smaller the higher damping we use. Two fun-
damentally di�erent approaches are theoretically vali-

dated and usable for planetary gearbox modelling with
any number of planets, using multibody dynamics.
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Appendix (3D model)

Figure 2 shows two versions of a 6-body multibody
model, i.e. consisting of sun, ring, 3 planetary gears
and a planetary carrier. With 6 coordinates per body
(3D) there are 36 DOF. All 6 bodies are �xed at their
mass center to either ground or to the planetary car-
rier. In 3D it require 30 constraint equations but as the
ring gear cannot rotate and with 4 gear constraints, it
means that there is one rotational DOF left. When
torque is applied to either body, everything will rotate
appropriately. The 3D version of Equation 2.1.1 be-
comes:

l̇3D = ṙj + ω̃jAjs
′
j − ṙi − ω̃iAis

′
i (23)

where: ω = Aω′ = A{ωξ ωη ωζ}T (24)

The skew-symmetric matrix of a vector is a 3×3-matrix
and for ω it is ω̃. A useful method of calculating the
cross product between two vectors is to multiply the
skew-symmetric matrix of the �rst vector with the sec-
ond vector, e.g. ω̃s = ω × s. The skew-symmetric
matrix for e.g. the vector of local angular velocities ω′

is

ω̃′ =

 0 −ωζ ωη
ωζ 0 −ωξ
−ωη ωξ 0

 (25)

The 3D version of Equation 7 is:

Φ̇3D : (Anvr)
T

ẋiẏi
żi

+ ρiAi


ωiξ
ωiη
ωiζ

× vr

 −
ẋjẏj

żj

− ρjAj


ωjξ
ωjη
ωjζ

× vr

 = 0 (26)

It is easy to see that with DOF for (ẋ, ẏ, ż, ωξ, ωη, ωζ),
all DOF's are involved which again is important for
treating the reaction forces correctly (see e.g. Jør-
gensen et al. (2013)).
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Φ̈3D : (Anvr)
T
(
r̈i + ρi

[
(Aiω̃

′
iω

′
i)× vr + (Aiω̇

′
i)× vr + (Aiω

′
i)× v̇r

])
−(Anvr)

T
(
r̈j − ρj

[
(Ajω̃

′
jω

′
j)× vr + (Ajω̇

′
j)× vr + (Ajω

′
j)× v̇r

])
+(Anv̇r)

T
(
ṙi + ρi(Aiω

′
i)× vr

)
(27)

Equation (26) di�erentiated becomes Equation 27
and a maximum 1 skewmatrix above mathematical
symbols is used for cross products. From this equa-
tion, LHS coe�cients to the Jacobian matrix and RHS
contributions to γ can be found.
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