78 research outputs found

    Effect of dietary fiber, genetic strain and age on the digestive metabolism of broiler chickens

    Get PDF
    In this study, 360 male broilers, out of which 240 of a fast-growing strain (Cobb500), and 120 of a slow-growing strain (Label Rouge), were used to evaluate the effect of dietary fiber on digesta transit time and digestive metabolism during the period of 1 to 42 days of age. A completely randomized experimental design with a 3x2 factorial arrangement was applied, consisting of three groups of birds (slow-growing – SG; fast-growing fed ad libitum – FGAL; and fast-growing pair-fed with SG broilers – FGPF) and two iso-protein diets (a 3100 kcal ME/kg low-fiber diet –LFD- and a 2800 kcal ME/ kg high-fiber diet –HFD- with 14% wheat bran and 4% oat hulls). HFD-fed birds presented lower ME retention (p < 0.001) and lower dry matter metabolizability (DMM) (p < 0.001), which is possibly related to the shorter digesta transit time observed in these birds (p < 0.001). DMM was reduced with age, whereas metabolizable energy remained almost constant (p < 0.001) independently of strain. This may be related to the increase in feed intake as birds age. The slowgrowing strain did not present better utilization of the high-fiber diet as compared to the fast-growing strain in none of the analyzed ages, even though showing a significant better use of fiber and dietary energy from 31 days of age

    The ability of genetically lean or fat slow-growing chickens to synthesize and store lipids is not altered by the dietary energy source

    Get PDF
    The increasing use of unconventional feedstuffs in chicken's diets results in the substitution of starch by lipids as the main dietary energy source. To evaluate the responses of genetically fat or lean chickens to these diets, males of two experimental lines divergently selected for abdominal fat content were fed isocaloric, isonitrogenous diets with either high lipid (80 g/kg), high fiber (64 g/kg) contents (HL), or low lipid (20 g/kg), low fiber (21 g/kg) contents (LL) from 22 to 63 days of age. The diet had no effect on growth performance and did not affect body composition evaluated at 63 days of age. Glycolytic and oxidative energy metabolisms in the liver and glycogen storage in liver and Sartorius muscle at 63 days of age were greater in chicken fed LL diet compared with chicken fed HL diet. In Pectoralis major (PM) muscle, energy metabolisms and glycogen content were not different between diets. There were no dietary-associated differences in lipid contents of the liver, muscles and abdominal fat. However, the percentages of saturated (SFA) and monounsaturated fatty acids (MUFA) in tissue lipids were generally higher, whereas percentages of polyunsaturated fatty acids (PUFA) were lower for diet LL than for diet HL. The fat line had a greater feed intake and average daily gain, but gain to feed ratio was lower in that line compared with the lean line. Fat chickens were heavier than lean chickens at 63 days of age. Their carcass fatness was higher and their muscle yield was lower than those of lean chickens. The oxidative enzyme activities in the liver were lower in the fat line than in the lean line, but line did not affect energy metabolism in muscles. The hepatic glycogen content was not different between lines, whereas glycogen content and glycolytic potential were higher in the PM muscle of fat chickens compared with lean chickens. Lipid contents in the liver, muscles and abdominal fat did not differ between lines, but fat chickens stored less MUFA and more PUFA in abdominal fat and muscles than lean chickens. Except for the fatty acid composition of liver and abdominal fat, no interaction between line and diet was observed. In conclusion, the amount of lipids stored in muscles and fatty tissues by lean or fat chickens did not depend on the dietary energy source
    • …
    corecore