2,125 research outputs found

    The role of stellar radial motions in shaping galaxy surface brightness profiles

    Get PDF
    Aims. The physics driving features such as breaks observed in galaxy surface brightness (SB) profiles remains contentious. Here, we assess the importance of stellar radial motions in shaping their characteristics. Methods. We use the simulated Milky Way-mass cosmological discs from the Ramses Disc Environment Study (RaDES) to characterise the radial redistribution of stars in galaxies displaying type-I (pure exponentials), II (downbending), and III (upbending) SB profiles. We compare radial profiles of the mass fractions and the velocity dispersions of different sub-populations of stars according to their birth and current location. Results. Radial redistribution of stars is important in all galaxies regardless of their light profiles. Type-II breaks seem to be a consequence of the combined effects of outward-moving and accreted stars. The former produce shallower inner profiles (lack of stars in the inner disc) and accumulate material around the break radius and beyond, strengthening the break; the latter can weaken or even convert the break into a pure exponential. Further accretion from satellites can concentrate material in the outermost parts, leading to type-III breaks that can coexist with type-II breaks, but situated further out. Type-III galaxies would be the result of an important radial redistribution of material throughout the entire disc, as well as a concentration of accreted material in the outskirts. In addition, type-III galaxies display the most efficient radial redistribution and the largest number of accreted stars, followed by type-I and II systems, suggesting that type-I galaxies may be an intermediate case between types-II and III. In general, the velocity dispersion profiles of all galaxies tend to flatten or even increase around the locations where the breaks are found. The age and metallicity profiles are also affected, exhibiting different inner gradients depending on their SB profile, being steeper in the case of type-II systems (as found observationally). The steep type-II profiles might be inherent to their formation rather than acquired via radial redistribution

    Evidence of ongoing radial migration in NGC 6754: Azimuthal variations of the gas properties

    Get PDF
    Understanding the nature of spiral structure in disk galaxies is one of the main, and still unsolved questions in galactic astronomy. However, theoretical works are proposing new testable predictions whose detection is becoming feasible with recent development in instrumentation. In particular, streaming motions along spiral arms are expected to induce azimuthal variations in the chemical composition of a galaxy at a given galactic radius. In this letter we analyse the gas content in NGC 6754 with VLT/MUSE data to characterise its 2D chemical composition and Hα\alpha line-of-sight velocity distribution. We find that the trailing (leading) edge of the NGC 6754 spiral arms show signatures of tangentially-slower, radially-outward (tangentially-faster, radially-inward) streaming motions of metal-rich (poor) gas over a large range of radii. These results show direct evidence of gas radial migration for the first time. We compare our results with the gas behaviour in a NN-body disk simulation showing spiral morphological features rotating with a similar speed as the gas at every radius, in good agreement with the observed trend. This indicates that the spiral arm features in NGC 6754 may be transient and rotate similarly as the gas does at a large range of radii.Comment: 8 pages, 4 figures, accepted for publication in ApJL 2016 September 2

    Black-hole-regulated star formation in massive galaxies

    Full text link
    Super-massive black holes, with masses larger than a million times that of the Sun, appear to inhabit the centers of all massive galaxies. Cosmologically-motivated theories of galaxy formation need feedback from these super-massive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations dramatically fail to reproduce the number density and properties of massive galaxies in the local Universe. However, there is no observational evidence of this strongly coupled co-evolution between super-massive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we show that the star formation histories (SFHs) of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central super-massive black hole. Our results suggest that black hole mass growth scales with gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies hosting more massive central black holes. The observed relation between black hole mass and star formation efficiency applies to all generations of stars formed throughout a galaxy's life, revealing a continuous interplay between black hole activity and baryon cooling.Comment: Published in Nature, 1 January 201

    Observational constraints to boxy/peanut bulge formation time

    Get PDF
    Boxy/peanut bulges are considered to be part of the same stellar structure as bars and both could be linked through the buckling instability. The Milky Way is our closest example. The goal of this letter is determining if the mass assembly of the different components leaves an imprint in their stellar populations allowing to estimate the time of bar formation and its evolution. To this aim we use integral field spectroscopy to derive the stellar age distributions, SADs, along the bar and disc of NGC 6032. The analysis shows clearly different SADs for the different bar areas. There is an underlying old (>=12 Gyr) stellar population for the whole galaxy. The bulge shows star formation happening at all times. The inner bar structure shows stars of ages older than 6 Gyrs with a deficit of younger populations. The outer bar region presents a SAD similar to that of the disc. To interpret our results, we use a generic numerical simulation of a barred galaxy. Thus, we constrain, for the first time, the epoch of bar formation, the buckling instability period and the posterior growth from disc material. We establish that the bar of NGC 6032 is old, formed around 10 Gyr ago while the buckling phase possibly happened around 8 Gyr ago. All these results point towards bars being long-lasting even in the presence of gas.Comment: Accepted for publication in MNRAS Letter

    The shape of oxygen abundance profiles explored with MUSE: evidence for widespread deviations from single gradients

    Get PDF
    We characterised the oxygen abundance radial distribution of a sample of 102 spiral galaxies observed with VLT/MUSE using the O3N2 calibrator. The high spatial resolution of the data allowed us to detect 14345 H ii regions with the same image quality as with photometric data, avoiding any dilution effect. We developed a new methodology to automatically fit the abundance radial profiles, finding that 55 galaxies of the sample exhibit a single negative gradient. The remaining 47 galaxies also display, as well as this negative trend, either an inner drop in the abundances (21), an outer flattening (10), or both (16), which suggests that these features are a common property of disc galaxies. The presence and depth of the inner drop depends on the stellar mass of the galaxies with the most massive systems presenting the deepest abundance drops, while there is no such dependence in the case of the outer flattening. We find that the inner drop appears always around 0.5 r, while the position of the outer flattening varies over a wide range of galactocentric distances. Regarding the main negative gradient, we find a characteristic slope in the sample of α =-0.10 ± 0.03 dex /r. This slope is independent of the presence of bars and the density of the environment. However, when inner drops or outer flattenings are detected, slightly steeper gradients are observed. This suggests that radial motions might play an important role in shaping the abundance profiles. We define a new normalisation scale (>the abundance scale length>, r) for the radial profiles based on the characteristic abundance gradient, with which all the galaxies show a similar position for the inner drop (~0.5 r) and the outer flattening (~1.5 r). Finally, we find no significant dependence of the dispersion around the negative gradient with any property of the galaxies, with values compatible with the uncertainties associated with the derivation of the abundances.© ESO, 2018.This study is based on observations made with ESO Telescopes at the Paranal Observatory (programmes 60.A-9329(A), 095.D-0172(A), 95.D-0091(A), 95.D-0091(B), 096.D-0263(A), 96.D-0296(A), 97.D-0408(A) and 98.D-0115(A)) and has also made use of the services of the ESO Science Archive Facility (programmes 60.A-9319(A), 60.A-9100(B), 60.A-9329(A), 60.A-9339(A), 60.A-9301(A), 196.B-0578(A) and 094.B-0733(B)). We would like to thank the anonymous referee for comments which helped to improve the content of the paper. We acknowledge financial support from the Spanish Ministerio de Economia y Competitividad (MINECO) via grants AYA2012-31935, and from the >Junta de Andalucia> local government through the FQM-108 project. We also acknowledge support to the ConaCyt funding programme 180125 and DGAPA IA100815. L.G. is supported in part by the US National Science Foundation under Grant AST-1311862. T.K. acknowledges support through the Sofja Kovalevskaja Award to P. Schady from the Alexander von Humboldt Foundation of Germany. We acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr).This research also makes use of python (http://www.python.org),of Matplotlib (Hunter 2007), a suite of open-source python modules that provides a framework for creating scientific plots, and Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013).Peer reviewe

    Integrated-light analyses vs. colour-magnitude diagrams - II. Leo A, an extremely young dwarf in the Local Group

    Full text link
    Context. Most of our knowledge on the stellar component of galaxies is based on the analysis of distant systems and comes from integrated light data. It is important to test whether the results of the star formation histories (SFH) obtained with standard full-spectrum fitting methods are in agreement with those obtained through colour-magnitude diagram (CMD) fitting (usually considered the most reliable approach). Aims. We compare SFHs recovered from both techniques in Leo~A, a Local Group dwarf galaxy whose majority of stars formed during the last 8 Gyrs. This complements our previous findings in a field in the Large Magellanic Cloud bar, where star formation has been on-going since early epochs though at varying rates. Methods. We have used GTC/OSIRIS in long-slit mode to obtain a high-quality integrated light spectrum by scanning a selected region within Leo~A, for which a CMD reaching the old main mequence turn-off (oMSTO) is available from HST. We compared the SFH obtained from the two datasets, using state-of-art methods of integrated light ({\tt STECKMAP}) and resolved stellar population analysis. In the case of the CMD, we computed the SFH both from a deep CMD (observed with HST/ACS), and from a shallower one (archival data from HST/WFPC2). Results. The agreement between the SFHs recovered from the oMSTO CMD and from full spectrum fitting is remarkable, particularly regarding the time evolution of the star formation rate. The overall extremely low metallicity of Leo~A is recovered up to the last 2 Gyrs, when some discrepancies appear. A relatively high metallicity found for the youngest stars from the integrated data is a recurring feature that might indicate that the current models or synthesis codes should be revised, but that can be significantly mitigated using a more restrictive metallicity range... [Abridged]Comment: 15 pages, 12 figures, accepted for publication in A&

    The transcriptional and mutational landscapes of lipid metabolism-related genes in colon cancer

    Full text link
    Metabolic alterations encountered in tumors are well recognized and considered as a hallmark of cancer. In addition to Warburg Effect, epidemiological and experimental studies support the crucial role of lipid metabolism in colorectal cancer (CRC). The overexpression of four lipid metabolism-related genes (ABCA1, ACSL1, AGPAT1 and SCD genes) has been proposed as prognostic marker of stage II CRC (ColoLipidGene signature). In order to explore in depth the transcriptomic and genomic scenarios of ABCA1, ACSL1, AGPAT1 and SCD genes, we performed a transcriptomic meta-analysis in more than one thousand CRC individuals. Additionally we analyzed their genomic coding sequence in 95 patients, to find variants that could orchestrate CRC prognosis. We found that genetic variant rs3071, located on SCD gene, defines a 9.77% of stage II CRC patients with high risk of death. Moreover, individuals with upregulation of ABCA1 and AGPAT1 expression have an increased risk of CRC recurrence, independently of tumor stage. ABCA1 emerges as one of the main contributors to signature's prognostic effect. Indeed, both high ABCA1 expression and presence of tumoral genetic variants located in ABCA1 coding region, seem to be associated with CRC risk of death. In addition the non-synonymous polymorphism rs2230808, located on ABCA1, is associated with gene expression. Patients carrying at least one copy of minor allele showed higher levels of ABCA1 expression than patients carrying homozygous major allele. This study broaden the prognostic value of ABCA1, ACSL1, AGPAT1 and SCD genes, independently of CRC tumor stage, leading to future precision medicine approaches and "omics"-guided therapiesMinisterio de Economía y Competitividad del Gobierno de España (MINECO, Plan Nacional I+D+i AGL2016-76736-C3), Gobierno regional de la Comunidad de Madrid (P2013/ABI-2728, ALIBIRD-CM) and EU Structural Fund

    Monitoring of miR-181a-5p and miR-155-5p Plasmatic Expression as Prognostic Biomarkers for Acute and Subclinical Rejection in de novo Adult Liver Transplant Recipients.

    Get PDF
    Background and Aims: News strategies for the accurate assessment of the state of immunosuppression (IS) in liver transplant recipients are needed to prevent rejection and minimize drug-related side effects. miRNAs can potentially be used as diagnostic or prognostic biomarkers in transplant patients. This study evaluated the capacity of a plasmatic miRNA panel (miR-155-5p, miR-122-5p, miR-181a-5p, and miR148-3p) as an early non-invasive prognostic and diagnostic biomarker for T cell-mediated acute rejection (TCMAR) and subclinical rejection (SCR) in adult liver recipients. Methods: A total of 145 liver recipients were included. All patients received a calcineurin inhibitor with or without mycophenolate mofetil and methylprednisolone. Plasmatic miRNA expression was assessed by qPCR before and at different time-points after liver transplantation. Results: Seventeen patients experienced TCMAR, and eight were diagnosed with SCR during the protocol biopsy at the 3rd month post-transplantation. Pre-transplantation, miR-155-5p expression was significantly higher in TCMAR patients and in SCR patients than in non-rejectors, and miR-181a-5p expression was also significantly higher in SCR patients than in non-rejectors. Post-transplantation, before transaminase-level modification, significantly increased miR-181a-5p, miR-155-5p, and miR-122-5p expression was observed in TCMAR and SCR patients. Binary logistic regression analyses showed, post-transplantation, that TCMAR risk was better predicted by individual expression of miR-181a-5p (LOGIT = -6.35 + 3.87*miR-181a-5p), and SCR risk was better predicted by the combination of miR-181a-5p and miR-155-5p expression (LOGIT = -5.18 + 2.27*miR-181a-5p+1.74*miR-155-5p). Conclusions: Pre-transplantation plasmatic miR-155-5p expression may be useful for stratifying low-immunologic-risk patients, and post-transplantation miR-181a-5p and miR-155-5p may be candidates for inclusion in early, non-invasive prognostic biomarker panels to prevent TCMAR or SCR and better identify patient candidates for IS minimization. Large prospective randomized multicenter trials are needed to refine the cut-off values and algorithms and validate the clinical usefulness of these biomarkers

    Dissecting galactic bulges in space and time - I. The importance of early formation scenarios versus secular evolution

    Get PDF
    The details of bulge formation via collapse, mergers, secular processes or their interplay remain unresolved. To start answering this question and quantify the importance of distinct mechanisms, we mapped a sample of three galactic bulges using data from the integral field spectrograph WiFeS on the ANU's 2.3-m telescope in Siding Spring Observatory. Its high-resolution gratings (R ∼ 7000) allow us to present a detailed kinematic and stellar population analysis of their inner structures with classical and novel techniques. The comparison of those techniques calls for the necessity of inversion algorithms in order to understand complex substructures and separate populations. We use line-strength indices to derive single stellar population equivalent ages and metallicities. Additionally, we use full spectral fitting methods, here the code STECKMAP, to extract their star formation histories. The high quality of our data allows us to study the 2D distribution of different stellar populations (i.e. young, intermediate and old). We can identify their dominant populations based on these age-discriminated 2D light and mass contribution. In all galactic bulges studied, at least 50 per cent of the stellar mass already existed 12 Gyr ago, more than currently predicted by simulations. A younger component (age between ∼1 and ∼8 Gyr) is also prominent and its present day distribution seems to be affected much more strongly by morphological structures, especially bars, than the older one. This in-depth analysis of the three bulges supports the notion of increasing complexity in their evolution, likely to be found in numerous bulge structures if studied at this level of detail, which cannot be achieved by mergers alone and require a non-negligible contribution of secular evolution

    Dissecting galactic bulges in space and time I: The importance of early formation scenarios vs. secular evolution

    Full text link
    This article has been accepted for publication in Monthly Notices Royal Astronomical Society ©: 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reservedThe details of bulge formation via collapse, mergers, secular processes or their interplay remain unresolved. To start answering this question and quantify the importance of distinct mechanisms, we mapped a sample of three galactic bulges using data from the integral field spectrograph WiFeS on the ANU's 2.3-m telescope in Siding Spring Observatory. Its highresolution gratings (R ~ 7000) allow us to present a detailed kinematic and stellar population analysis of their inner structures with classical and novel techniques. The comparison of those techniques calls for the necessity of inversion algorithms in order to understand complex substructures and separate populations. We use line-strength indices to derive single stellar population equivalent ages and metallicities. Additionally, we use full spectral fitting methods, here the code STECKMAP, to extract their star formation histories. The high quality of our data allows us to study the 2D distribution of different stellar populations (i.e. young, intermediate and old). We can identify their dominant populations based on these age-discriminated 2D light and mass contribution. In all galactic bulges studied, at least 50 per cent of the stellar mass already existed 12 Gyr ago, more than currently predicted by simulations. A younger component (age between ~1 and ~8 Gyr) is also prominent and its present day distribution seems to be affected much more strongly by morphological structures, especially bars, than the older one. This in-depth analysis of the three bulges supports the notion of increasing complexity in their evolution, likely to be found in numerous bulge structures if studied at this level of detail, which cannot be achieved by mergers alone and require a non-negligible contribution of secular evolutionMKS acknowledges the support of the Instituto de Astrofísica de Canarias via an Astrophysicist Resident fellowship and Ignacio Martín-Navarro, Andra Stroe and Stéphane Courteau for useful discussions. RC acknowledges the Ministerio de Ciencia e Innovación by means of their FPI program (grant AYA- 2010-21322-C03-03 and AYA-2013-48226-C3-3-P). JFB acknowledges support from the Ramón y Cajal Program and from the FP7 Marie Curie Actions of the European Commission, via the Initial Training Network DAGAL under REA grant agreement number 289313. TRL thanks the support of the Spanish Ministerio de Educación, Cultura y Deporte by means of the FPU fellowship. This research has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO; grants AYA2010-21322-C03-02 and AYA2009-11137) and by the Spanish Ministry of Science and Innovation (MICINN; grants AYA2011-24728 and Consolider-Ingenio CSD2010-00064) and by the Junta de Andalucía (FQM-108
    corecore