Understanding the nature of spiral structure in disk galaxies is one of the
main, and still unsolved questions in galactic astronomy. However, theoretical
works are proposing new testable predictions whose detection is becoming
feasible with recent development in instrumentation. In particular, streaming
motions along spiral arms are expected to induce azimuthal variations in the
chemical composition of a galaxy at a given galactic radius. In this letter we
analyse the gas content in NGC 6754 with VLT/MUSE data to characterise its 2D
chemical composition and Hα line-of-sight velocity distribution. We find
that the trailing (leading) edge of the NGC 6754 spiral arms show signatures of
tangentially-slower, radially-outward (tangentially-faster, radially-inward)
streaming motions of metal-rich (poor) gas over a large range of radii. These
results show direct evidence of gas radial migration for the first time. We
compare our results with the gas behaviour in a N-body disk simulation
showing spiral morphological features rotating with a similar speed as the gas
at every radius, in good agreement with the observed trend. This indicates that
the spiral arm features in NGC 6754 may be transient and rotate similarly as
the gas does at a large range of radii.Comment: 8 pages, 4 figures, accepted for publication in ApJL 2016 September
2