374 research outputs found

    Intrinsic instability of lean hydrogen/ammonia premixed flames: Influence of Soret effect and pressure

    Full text link
    The addition of hydrogen in ammonia/air mixtures can lead to the onset of intrinsic flame instabilities at conditions of technical relevance. The length and time scales of intrinsic instabilities can be estimated by means of linear stability analysis of planar premixed flames by evaluating the dispersion relation. In this work, we perform such linear stability analysis for hydrogen-enriched ammonia/air flames (50%H2-50%NH3 by volume) using direct numerical simulation with a detailed chemical kinetic mechanism. The impact of pressure and the inclusion of the Soret effect in the governing equations is assessed by comparing the resulting dispersion relation at atmospheric pressure and 10 atm. Our data indicate that both pressure and the Soret effects promote the onset of intrinsic instabilities. Comparisons with available numerical literature data as well as theoretical models are also discussed

    A chemical trompe-l'\oe{}il: no iron spread in the globular cluster M22

    Get PDF
    We present the analysis of high-resolution spectra obtained with UVES and UVES-FLAMES at the Very Large Telescope of 17 giants in the globular cluster M22, a stellar system suspected to have an intrinsic spread in the iron abundance. We find that when surface gravities are derived spectroscopically (by imposing to obtain the same iron abundance from FeI and FeII lines) the [Fe/H] distribution spans ~0.5 dex, according to previous analyses. However, the gravities obtained in this way correspond to unrealistic low stellar masses (0.1-0.5 Msun) for most of the surveyed giants. Instead, when photometric gravities are adopted, the [FeII/H] distribution shows no evidence of spread at variance with the [FeI/H] distribution. This difference has been recently observed in other clusters and could be due to non-local thermodynamical equilibrium effects driven by over-ionization mechanisms, that mainly affect the neutral species (thus providing lower [FeI/H]) but leave [FeII/H] unaltered. We confirm that the s-process elements show significant star-to-star variations and their abundances appear to be correlated with the difference between [FeI/H] and [FeII/H]. This puzzling finding suggests that the peculiar chemical composition of some cluster stars may be related to effects able to spuriously decrease [FeI/H]. We conclude that M22 is a globular cluster with no evidence of intrinsic iron spread, ruling out that it has retained the supernovae ejecta in its gravitational potential well.Comment: Accepted for publication to ApJ; 33 pages, 10 figures, 6 table

    Mitigation of Darrieus-Landau instability effects on turbulent premixed flames

    Get PDF
    Theoretical considerations on the competition between the most amplified modes for Darrieus-Landau (DL) hydrodynamic instability and turbulence timescales, show that, two extremal regimes can be identified: the instability-dominated and turbulence-dominated regimes. In the latter, also denoted as unified regime, both experiments and numerical simulations give evidence showing how the large scale, cusp-like structures of the flame front surface, typical of DL instability, are hindered by turbulent fluctuations. The result is that quantities such as turbulent flame propagation and front curvature statistics, which in the instability dominated regime are enhanced or modified by the overwhelming presence of hydrodynamic instability, are now mitigated and a unified regime is reached in which the characteristics of DL unstable and stable flame configurations become indistinguishable. In this work we analyze the concealing effects of increasing level of turbulence over the hydrodynamic Darrieus-Landau instability, and we show that, although some global indices such as the skewness of the curvature p.d.f. suggest that a unified regime is reached, others show the persistence of residual differences: in particular, the power spectral density of the flame front curvature. We use both experimental and numerical datasets of stable and unstable (based on linear stability analysis) flames, in conditions ranging from quasi laminar to significantly turbulent regimes

    An efficient modeling framework for wall heat flux prediction in rocket combustion chambers using non adiabatic flamelets and wall-functions

    Get PDF
    In this work an efficient numerical framework for the prediction of wall heat loads in Liquid Rocket Engine combustion chambers is presented. The proposed framework is based on a new version of the non-adiabatic flamelet model and on wall functions for turbulent boundary layer modeling. Different wall function models are applied to 2D and 3D wall heat flux simulations of an experimental single-element gaseous oxygen-gaseous methane combustor in an Unsteady Reynolds Averaged Navier Stokes context. A systematic analysis and a comprehensive comparison of the selected wall models is carried out. The role of the constant or variable properties assumption on the near-wall turbulent quantities affecting the wall heat flux is assessed and the resulting friction velocity scaling investigated. When the skin friction velocity based on the local turbulent kinetic energy is defined by considering constant properties across the boundary layer, the equilibrium boundary layer assumption is not fulfilled and a significant overestimation of the wall heat flux is observed. Results obtained with the corrected near-wall turbulence modeling, on the other hand, showed a substantial improvement in terms of wall heat flux when compared with both experimental data and higher fidelity simulations results

    MONOFRACTAL AND MULTIFRACTAL ANALYSIS IN SHORT - TERM TIME DYNAMICS OF ULF GEOMAGNETIC FIELD MEASURED IN CRETE, GREECE

    Get PDF
    In this work, a monofractal and multifractal characterization of the short-term time dynamical fluctuations of the ultra low frequency (ULF) geomagnetic field, measured by one station installed in Creete, Greece, has been carried out. Time scale properties of the three ULF geomagnetic components, two horizontal (x, y) and one vertical (z) have been analyzed through the power spectral density, Higuchi method and Hurst R/S analysis. Results point out the presence of fractal features expressing long-range time correlation with scaling coefficients, which are the clue of persistent mechanism. Using a set of multifractal parameters, defined from the shape of the multifractal spectrum, it has been observed that the degree of multifractality, that characterizes the original signals, is "weaker" if compared to the residual signals, obtained from the original ones after removing the four observed periodicities (24-, 12-, 8- and 6-h periodicties). Furthermore the horizontal χ and y components have revealed to be less multifractal than the vertical z-component

    Deep electrical resistivity tomography and geothermal analysis of Bradano foredeep deposits in Venosa area (Southern Italy): preliminary results

    Get PDF
    Geophysical surveys have been carried out to characterize the stratigraphical and structural setting and to better understand the deep water circulation system in the Venosa area (Southern Italy) located in the frontal portion of the southern Appenninic Subduction. In this area there are some deep water wells from which a water conductivity of about 3 mS/cm and a temperature of about 35°C was measured. A deep geoelectrical tomography with dipole-dipole array has been carried out along a profile of 10000 m and an investigation depth of about 900 m. Furthermore a broad band magnetotelluric profile consisting of six stations was performed to infer the resistivity distribution up to some kilometres of depth. The MT profile was almost coincident with the geoelectrical outline. The applied methods allow us to obtain a mutual control and integrated interpretation of the data. The high resolution of the data was the key to reconstruct the structural asset of buried carbonatic horst whose top is located at about 600 m depth. The final results coming from data wells, geothermal analysis and geophysical data, highlighted a horst saturated with salted water and an anomalous local gradient of 60°C/km. The proposed mechanism is that of a mixing of fossil and fresh water circulation system

    Using the ERT method in tectonically active areas: hints from Southern Apennine (Italy)

    Get PDF
    Abstract. Electrical Resistivity Tomography (ERT) method has been used to study two tectonically active areas of southern Apennine (Caggiano Faults and Ufita Basin). The main aim of this job was to study the structural setting of the investigated areas, i.e. the geometry of the basins at depth, the location of active faults at surface, and their geometrical characterization. The comparison between ERT and trench/drilling data allowed us to evaluate the efficacy of the ERT method in studying active faults and the structural setting of seismogenic areas. In the Timpa del Vento intermontane basin, high resolution ERT across the Caggiano Fault scarps, with different arrays, electrode spacing (from 1 to 10 m) and penetration depth (from about 5 to 40 m) was carried out. The obtained resistivity models allowed us to locate the fault planes along the hillslope and to gather information at depth, as later confirmed by paleoseismological trenches excavated across the fault trace. In the Ufita River Valley a 3560-m-long ERT was carried out across the basin, joining 11 roll-along multi-channel acquisition system with an electrode spacing of 20 m and reaching an investigation depth of about 170 m. The ERT allowed us to reconstruct the geometry and thickness of the Quaternary deposits filling the Ufita Valley. Our reconstruction of the depositional setting is in agreement with an interpretative geological section based on borehole data

    Lost and found: evidence of Second Generation stars along the Asymptotic Giant Branch of the globular cluster NGC 6752

    Get PDF
    We derived chemical abundances for C, N, O, Na, Mg and Al in 20 asymptotic giant branch (AGB) stars in the globular cluster NGC 6752. All these elements (but Mg) show intrinsic star-to-star variations and statistically significant correlations or anticorrelations analogous to those commonly observed in red giant stars of globular clusters hosting multiple populations. This demonstrates that, at odds with previous findings, both first and second generation stars populate the AGB of NGC 6752. The comparison with the Na abundances of red giant branch stars in the same cluster reveals that second generation stars (with mild Na and He enrichment) do reach the AGB phase. The only objects that are not observed along the AGB of NGC 6752 are stars with extreme Na enhancement. This is also consistent with standard stellar evolution models, showing that highly Na and He enriched stars populate the bluest portion of the horizontal branch and, because of their low stellar masses, evolve directly to the white dwarf cooling sequence, skipping the AGB phase

    Using the ERT method in tectonically active areas: hints from Southern Apennine (Italy)

    Get PDF
    Electrical Resistivity Tomography (ERT) method has been used to study two tectonically active areas of southern Apennine (Caggiano Faults and Ufita Basin). The main aim of this job was to study the structural setting of the investigated areas, i.e. the geometry of the basins at depth, the location of active faults at surface, and their geometrical characterization. The comparison between ERT and trench/drilling data allowed us to evaluate the efficacy of the ERT method in studying active faults and the structural setting of seismogenic areas. In the Timpa del Vento intermontane basin, high resolution ERT across the Caggiano Fault scarps, with different arrays, electrode spacing (from 1 to 10 m) and penetration depth (from about 5 to 40 m) was carried out. The obtained resistivity models allowed us to locate the fault planes along the hillslope and to gather information at depth, as later con-firmed by paleoseismological trenches excavated across the fault trace. In the Ufita River Valley a 3560-m-long ERT was carried out across the basin, joining 11 roll-along multi-channel acquisition system with an electrode spacing of 20mand reaching an investigation depth of about 170 m. The ERT allowed us to reconstruct the geometry and thickness of the Quaternary deposits filling the Ufita Valley. Our reconstruction of the depositional setting is in agreement with an interpretative geological section based on borehole data

    Multiple populations along the asymptotic giant branch of the globular cluster M 4

    Get PDF
    Nearly all Galactic globular clusters host stars that display characteristic abundance anti-correlations, like the O-rich/Na-poor pattern typical of field halo stars, together with O-poor/Na-rich additional components. A recent spectroscopic investigation questioned the presence of O-poor/Na-rich stars amongst a sample of asymptotic giant branch stars in the cluster M 4, at variance with the spectroscopic detection of a O-poor/Na-rich component along both the cluster red giant branch and horizontal branch. This is contrary to what is expected from the cluster horizontal branch morphology and horizontal branch stellar evolution models. Here we have investigated this issue by employing the CUBI= (U-B)-(B-I) index, that previous studies have demonstrated to be very effective in separating multiple populations along both the red giant and asymptotic giant branch sequences. We confirm previous results that the RGB is intrinsically broad in the V-CUBI diagram, with the presence of two components which nicely correspond to the two populations identified by high-resolution spectroscopy. We find that AGB stars are distributed over a wide range of CUBI values, in close analogy with what is observed for the RGB, demonstrating that the AGB of M4 also hosts multiple stellar populations
    • …
    corecore