33 research outputs found

    CABE : a cloud-based acoustic beamforming emulator for FPGA-based sound source localization

    Get PDF
    Microphone arrays are gaining in popularity thanks to the availability of low-cost microphones. Applications including sonar, binaural hearing aid devices, acoustic indoor localization techniques and speech recognition are proposed by several research groups and companies. In most of the available implementations, the microphones utilized are assumed to offer an ideal response in a given frequency domain. Several toolboxes and software can be used to obtain a theoretical response of a microphone array with a given beamforming algorithm. However, a tool facilitating the design of a microphone array taking into account the non-ideal characteristics could not be found. Moreover, generating packages facilitating the implementation on Field Programmable Gate Arrays has, to our knowledge, not been carried out yet. Visualizing the responses in 2D and 3D also poses an engineering challenge. To alleviate these shortcomings, a scalable Cloud-based Acoustic Beamforming Emulator (CABE) is proposed. The non-ideal characteristics of microphones are considered during the computations and results are validated with acoustic data captured from microphones. It is also possible to generate hardware description language packages containing delay tables facilitating the implementation of Delay-and-Sum beamformers in embedded hardware. Truncation error analysis can also be carried out for fixed-point signal processing. The effects of disabling a given group of microphones within the microphone array can also be calculated. Results and packages can be visualized with a dedicated client application. Users can create and configure several parameters of an emulation, including sound source placement, the shape of the microphone array and the required signal processing flow. Depending on the user configuration, 2D and 3D graphs showing the beamforming results, waterfall diagrams and performance metrics can be generated by the client application. The emulations are also validated with captured data from existing microphone arrays.</jats:p

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    KuROS: A new airborne Ku-band Doppler radar for observation of the ocean surface

    No full text
    International audienceWe present the new airborne Ku-band Doppler radar KuROS, designed for wind/wave observations of the ocean surface. First results obtained from observations collected during two field campaigns held in 2013 are also illustrated. Both intensity and Doppler information have been used to estimate the direction wave spectra of ocean waves. Results on radar cross-section and directional spectra of ocean wave are assessed trough comparison with independent information. We also present a preliminary analysis of the speckle energy density spectrum as a function of sea state condition

    Prevention and Treatment of Glucocorticoid-Induced Osteoporosis in Adults: Consensus Recommendations From the Belgian Bone Club

    No full text
    Glucocorticoids are effective immunomodulatory drugs used for many inflammatory disorders as well as in transplant recipients. However, both iatrogenic and endogenous glucocorticoid excess are also associated with several side effects including an increased risk of osteoporosis and fractures. Glucocorticoid-induced osteoporosis (GIOP) is a common secondary cause of osteoporosis in adults. Despite availability of clear evidence and international guidelines for the prevention of GIOP, a large treatment gap remains. In this narrative review, the Belgian Bone Club (BBC) updates its 2006 consensus recommendations for the prevention and treatment of GIOP in adults. The pathophysiology of GIOP is multifactorial. The BBC strongly advises non-pharmacological measures including physical exercise, smoking cessation and avoidance of alcohol abuse in all adults at risk for osteoporosis. Glucocorticoids are associated with impaired intestinal calcium absorption; the BBC therefore strongly recommend sufficient calcium intake and avoidance of vitamin D deficiency. We recommend assessment of fracture risk, taking age, sex, menopausal status, prior fractures, glucocorticoid dose, other clinical risk factors and bone mineral density into account. Placebo-controlled randomized controlled trials have demonstrated the efficacy of alendronate, risedronate, zoledronate, denosumab and teriparatide in GIOP. We suggest monitoring by dual-energy X-ray absorptiometry (DXA) and vertebral fracture identification one year after glucocorticoid initiation. The trabecular bone score might be considered during DXA monitoring. Extended femur scans might be considered at the time of DXA imaging in glucocorticoid users on long-term (≥ 3 years) antiresorptive therapy. Bone turnover markers may be considered for monitoring treatment with anti-resorptive or osteoanabolic drugs in GIOP. Although the pathophysiology of solid organ and hematopoietic stem cell transplantation-induced osteoporosis extends beyond GIOP alone, the BBC recommends similar evaluation, prevention, treatment and follow-up principles in these patients. Efforts to close the treatment gap in GIOP and implement available effective fracture prevention strategies into clinical practice in primary, secondary and tertiary care are urgently needed.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Modélisation des antennes électriques et magnétiques du GPR EISS pour la mission Exomars

    No full text
    http://ursi-france.institut-telecom.fr/pages/pages_evenements/journees_scient/docs_journees_2009/data/articles/000006.pdfInternational audienc

    The Belgian Bone Club 2020 guidelines for the management of osteoporosis in postmenopausal women

    No full text
    PURPOSE: To provide updated evidence-based guidelines for the management of osteoporosis in postmenopausal women in Belgium. METHODS: The Belgian Bone Club (BBC) gathered a guideline developer group. Nine "Population, Intervention, Comparator, Outcome" (PICO) questions covering screening, diagnosis, non-pharmacological and pharmacological treatments, and monitoring were formulated. A systematic search of MEDLINE, the Cochrane Database of Systematic Reviews, and Scopus was performed to find network meta-analyses, meta-analyses, systematic reviews, guidelines, and recommendations from scientific societies published in the last 10 years. Manual searches were also performed. Summaries of evidence were provided, and recommendations were further validated by the BBC board members and other national scientific societies' experts. RESULTS: Of the 3840 references in the search, 333 full texts were assessed for eligibility, and 129 met the inclusion criteria. Osteoporosis screening using clinical risk factors should be considered. Patients with a recent (<2 years) major osteoporotic fracture were considered at very high and imminent risk of future fracture. The combination of bone mineral density measured by dual-energy X-ray absorptiometry and 10-year fracture risk was used to categorize patients as low or high risk. Patient education, the combination of weight-bearing and resistance training, and optimal calcium intake and vitamin D status were recommended. Antiresorptive and anabolic osteoporosis treatment should be considered for patients at high and very high fracture risk, respectively. Follow-up should focus on compliance, and patient-tailored monitoring should be considered. CONCLUSION: BBC guidelines and 25 guideline recommendations bridge the gap between research and clinical practice for the screening, diagnosis, and management of osteoporosis.status: publishe

    The SuperCam infrared instrument on the NASA MARS2020 mission: performance and qualification results

    No full text
    International audienceIn July 2020, NASA will launch the Mars2020 mission. This mission, very similar to the Mars Science Laboratory and its rover Curiosity, consists in landing an instrumented rover on the Martian surface in order to characterize the geology and history of a new landing site on Mars, investigate Mars habitability, seek potential biosignatures, cache samples for an eventual return to Earth, and demonstrate in-situ production of oxygen needed for human exploration. The rover will carry several different instruments to perform field analyses in biology, climatology, mineralogy, geology and geochemistry. Among this payload, the SuperCam instrument, an improved new generation of the ChemCam instrument on Curiosity, has been developed for remote microscale characterization of the mineralogy and elemental chemistry of the Mars surface, along with the search for extant organic materials. In addition to the elemental characterization offered by Laser-Induced Breakdown Spectroscopy (LIBS), a new remote Raman spectroscopy analysis and an infrared spectrometer have been added for a complete mineralogical and chemical characterization of the samples. A context color imaging capability is also implemented to place the analyzed samples in their geological context.SuperCam consists of three units. The “Body Unit” built by the LANL (Los Alamos National Laboratories) in the US, the “Mast Unit” built by a French consortium of 5 laboratories (IRAP as leader, LESIA, LATMOS, IAS, and LAB) funded by the French Space Agency (CNES), and a “Calibration Target Unit“ under the responsibility of the University of Valladolid in Spain.A very compact IRS (Infrared Spectrometer) is part of the SuperCam-MU payload. The IRS concept is based on the spectral selection by an Acousto-Optic Tunable Filter (AOTF) in the 1.3-2.6 μm range with a spectral resolution better than 30 wavenumbers. The AOTF is driven by radio frequencies injected in a transducer mounted directly on a birefringent crystal. This coupling creates acoustic waves in the crystal that behave like a Bragg grating. The incident light is then diffracted in two orders (e-ray and o-ray) at the same wavelength following a so-called tuning relation law (relation between diffracted wavelength and injected radio frequency). Each diffracted order is focused on a photodiode. A complete spectrum is obtained after the scan of all individual wavelengths.The IRS is built by LESIA and LATMOS, two French laboratories located in Paris area. After intensive performance and qualification tests as well as a calibration on a flight-representative model, the team has built the flight model. The qualification results and the performances of the instrument are presented

    How to manage osteoporosis before the age of 50

    Full text link
    This narrative review discusses several aspects of the management of osteoporosis in patients under 50 years of age. Peak bone mass is genetically determined but can also be affected by lifestyle factors. Puberty constitutes a vulnerable period. Idiopathic osteoporosis is a rare, heterogeneous condition in young adults due in part to decreased osteoblast function and deficient bone acquisition. There are no evidence-based treatment recommendations. Drugs use can be proposed to elderly patients at very high risk. Diagnosis and management of osteoporosis in the young can be challenging, in particular in the absence of a manifest secondary cause. Young adults with low bone mineral density (BMD) do not necessarily have osteoporosis and it is important to avoid unnecessary treatment. A determination of BMD is recommended for premenopausal women who have had a fragility fracture or who have secondary causes of osteoporosis: secondary causes of excessive bone loss need to be excluded and treatment should be targeted. Adequate calcium, vitamin D, and a healthy lifestyle should be recommended. In the absence of fractures, conservative management is generally sufficient, but in rare cases, such as chemotherapy-induced osteoporosis, antiresorptive medication can be used. Osteoporosis in young men is most often of secondary origin and hypogonadism is a major cause; testosterone replacement therapy will improve BMD in these patients. Diabetes is characterized by major alterations in bone quality, implying that medical therapy should be started sooner than for other causes of osteoporosis. Primary hyperparathyroidism, hyperthyroidism, Cushing's syndrome and growth hormone deficiency or excess affect cortical bone more often than trabecular bone. © 2020 The Author
    corecore