
sensors

Article

CABE: A Cloud-Based Acoustic Beamforming
Emulator for FPGA-Based Sound Source Localization

Laurent Segers 1,* , Jurgen Vandendriessche 1 , Thibaut Vandervelden 1 ,
Benjamin Johan Lapauw 1, Bruno da Silva 1,2 , An Braeken 1 and Abdellah Touhafi 1

1 Department of Engineering Technology (INDI), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
2 Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
* Correspondence: laurent.segers@vub.be

Received: 29 June 2019; Accepted: 6 September 2019; Published: 10 September 2019

Abstract: Microphone arrays are gaining in popularity thanks to the availability of low-cost
microphones. Applications including sonar, binaural hearing aid devices, acoustic indoor localization
techniques and speech recognition are proposed by several research groups and companies. In most
of the available implementations, the microphones utilized are assumed to offer an ideal response
in a given frequency domain. Several toolboxes and software can be used to obtain a theoretical
response of a microphone array with a given beamforming algorithm. However, a tool facilitating
the design of a microphone array taking into account the non-ideal characteristics could not be found.
Moreover, generating packages facilitating the implementation on Field Programmable Gate Arrays
has, to our knowledge, not been carried out yet. Visualizing the responses in 2D and 3D also poses an
engineering challenge. To alleviate these shortcomings, a scalable Cloud-based Acoustic Beamforming
Emulator (CABE) is proposed. The non-ideal characteristics of microphones are considered during
the computations and results are validated with acoustic data captured from microphones. It is also
possible to generate hardware description language packages containing delay tables facilitating the
implementation of Delay-and-Sum beamformers in embedded hardware. Truncation error analysis
can also be carried out for fixed-point signal processing. The effects of disabling a given group
of microphones within the microphone array can also be calculated. Results and packages can be
visualized with a dedicated client application. Users can create and configure several parameters
of an emulation, including sound source placement, the shape of the microphone array and the
required signal processing flow. Depending on the user configuration, 2D and 3D graphs showing
the beamforming results, waterfall diagrams and performance metrics can be generated by the client
application. The emulations are also validated with captured data from existing microphone arrays.

Keywords: cloud-based acoustic beamforming emulator; CABE; microphone array beamforming;
FPGA microphone array beamforming emulator; delay-and-sum cloud-based emulator

1. Introduction

In recent years, advances in Micro ElectroMechanical Systems (MEMS) microphone technology
and acoustic beamforming techniques allow for enhanced sound source localization in both acoustic
and ultrasound frequency range [1–3]. Sound source localization based on microphone arrays have
emerged and are used in various applications; ranging from ultrasound source localization [4], speech
localization [5], binaural hearing aid for disabled people [6] and sonar [7]. Advances in embedded
platform technologies allow the possibility to implement beamforming algorithms for microphone
arrays on reconfigurable architectures such as Field Programmable Gate Arrays (FPGA) [3,8–10].
The placement of the microphones, the utilized algorithms and the amount of microphones determine
the beamforming accuracy in terms of acoustic frequency resolution and spatial resolution. Estimating

Sensors 2019, 19, 3906; doi:10.3390/s19183906 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6071-0026
https://orcid.org/0000-0001-9872-0134
https://orcid.org/0000-0002-6006-7480
https://orcid.org/0000-0002-4877-9688
https://orcid.org/0000-0002-9965-915X
https://orcid.org/0000-0001-8891-180X
http://dx.doi.org/10.3390/s19183906
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3906 2 of 37

the response of a microphone array based on emulations prior to a hardware implementation has
been achieved by da Silva et al. [8]. There the FPGA algorithms were emulated on a local computer
in order to obtain optimized algorithms before the implementation on the hardware. Aside from
calculating the directivity of the array in one direction, the 95% confidence interval of the directivity
when steering in 360◦ has been calculated. Matlab offers the possibility to calculate the response
of a microphone array through the additional “Phased Array System Toolbox” [11]. Steckel et al.
used ultrasound beamforming to develop and improve a 3D enabled sonar which allows to extract
information of the environment using sparse arrays of microphones in conjunction with a single
Polaroid emitter [4]. Sun et al. [12] proposes an improved Direction of Arrival (DoA) technique based
on the generalized cross correlation algorithm in conjuction with a probabilistic neural network
approach for enhanced sound source localization in noisy and reverberant rooms. Most beamforming
tools allow to perform an analysis of a given microphone array along with the selected beamforming
algorithm. In WaveCloud [13,14] an open source simulation tool for acoustic sound propagation in
buildings is proposed. Users are free to download and install the tool. WaveCloud imports a 3D-stl file
of the building and users can place sound sources in the simulation environment. All the previously
discussed tools are executed locally and most are computational intensive and prohibits the use of the
local machine for other tasks. Moreover, these tools are bound to a group of users having access to that
particular machine.

In a recent movement, several companies offer cloud-based simulation alternatives to
the well-established engineering tools. Simscale [15] offers an online simulation platform for
Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) used in structural
engineering and thermal propagation in materials. This cloud-simulation tool is proposed in a free
limited version as well as in paid versions for professional users. Waveller Cloud from KUAVA [16]
is a simulation tool which allows to simulate acoustic propagation in prototypes such as the engines
of cars, gearboxes, etc. They provide their tool as a Software as a Service (SAAS) and users pay a
monthly fee or per CPU-hour cost. Aside of other cloud-based simulation tools, none of the tools
provide the ability to simulate the beamforming of a user defined microphone array and to facilitate
the implementation of FPGA by means of on the fly generated Very High Speed Integrated Circuit
Hardware Description Language (VHDL) packages. In order to allow other researchers to grant access
to the emulator without exposing the code and the associated learning curve, the previously proposed
cloud-based platform where users can generate, modify and download emulations [17] is extended.
The calculation of the beamforming and the generation of the VHDL packages are offered as a SAAS
to facilitate local implementation onto FPGA boards.

This paper is structured as follows. In Section 2 we describe the background and state of the art of
acoustic beamforming using arrays of microphones and extend the theoretical approach with non-ideal
characteristics of the utilized microphones and required signal processing along with the mathematical
principles. The beamforming quality of a microphone array based on the obtained results with a set of
performance metrics are described in Section 3. In Section 4 the architectural overview of the cloud
based emulator together with the implementation is described. In Section 5 the microphone arrays are
detailed along with the obtained emulated output results which can be downloaded from the platform.
The emulations are compared and validated with results obtained from acoustic captures in Section 6.
In Section 7 the conclusions and future work implementations are proposed.

2. Acoustic Beamforming

Microphone arrays consist of several microphones placed in well defined patterns and come
in different shapes and sizes offering different possibilities to locate a neighbouring sound source.
The process to locate a sound source with a microphone array is referred as the beamforming
method. Beamforming methods comprise several families of algorithms, including the Delay-and-Sum
(D&S) beamformers [3,18,19], the Generalised Sidelobe Cancellation (GSC) beamformers [20–22],
beamformers based on the MUltiple SIgnal Classification (MUSIC) algorithm [23,24] and beamformers

Sensors 2019, 19, 3906 3 of 37

based on the Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT)
algorithm [25,26]. The most popular one—the Delay-and-Sum Beamformers—has been described
by Dominguez et al. [3] by utilizing a microphone array consisting of 52 microphones. The D&S
beamforming method can be applied in environments where uncorrelated noise is expected. This
is especially the case when the microphone array is evaluated in an open field without any form of
acoustic reverberations. The family of GSC beamformers also utilizes a D&S approach. The GSC
method tries to alleviate the problem of correlated noise by estimating the amount of correlated
noise in the environment. This estimation is later subtracted from the result of the regular D&S
output. An adaptive variant is also proposed in [27]. The MUSIC and ESPRIT algorithms require
more processing capabilities than the regular D&S but also offer a higher resolution in terms of
Angle of Arrival (AoA) detection. Most of the algorithms described are presented with a more
theoretical background, where the effects from the microphones can be considered ideal. Ideal
microphones offer a one-to-one relationship between input and output without signal attenuation or
amplification in certain frequency ranges. In some implementations the D&S beamforming algorithms
are computed while taking into account the microphone effects [28,29]. Microphones—like any other
mechanical device—do exhibit non-ideal characteristics regarding sampling, frequency response and
introduced noise. Several types of microphones are available on the market, such as induction based
microphones, condenser, piezocrystal, low-cost analog MEMS microphones and low-cost digital MEMS
microphones. The manufacturing of a microphone array greatly depends on the type of microphones
used. The processing requirements of signals coming from these microphones is also influenced by the
selected microphone type. Therefore, the non-ideal characteristics of the microphones and the required
signal processing during the evaluation of the microphone arrays are taken into account.

2.1. Delay and Sum Beamforming

The acoustic beamforming methods utilize acoustic signals from different microphones of the
microphone array so that the AoA of a sound wave can be found. In order to steer in one particular
direction, the algorithm will delay samples from the different microphones so acoustic signals bearing
in the steering direction are amplified while acoustic signals coming from other orientations are
suppressed. The principle of steering in direction ~u with the D&S beamforming can be expressed as [3]:

o(~u, t) =
M−1

∑
m=0

sm(t− ∆m(~u)) (1)

Here, M corresponds to the number of microphones, o(~u, t) the resulting output signal in the
unitary steering vector ~u and sm(t − ∆m) the samples from microphone m delayed by a time ∆m.
Equation (1) expects a microphone array consisting of ideal microphones, i.e. microphones that
transform mechanical waves into electrical signals without any form of distortion.

The time delay ∆m for a microphone m in a given steering direction is obtained by computing
the dot product between the vector~rm describing the location of microphone m in the array and the
unitary steering vector ~u. The delay factor is normalized by the speed of sound (c) in air.

∆m =
~rm · ~u

c
(2)

The delay and sum algorithm can be tranformed in the frequency domain as:

O(~u, ω) =
M−1

∑
m=0

Sm(ω) · e−jω∆m(~u) (3)

Sensors 2019, 19, 3906 4 of 37

2.2. Delay and Sum Beamforming with Non-Ideal Microphones

Equation (3) assumes ideal microphones delivering samples containing neither sampling noise
nor frequency response effects. These non-idealities have to be taken into account when one desires
to apply beamforming over a broad frequency range, i.e. also including the Helmholtz frequency
regions [30] in case of ultrasound MEMS transducers. Therefore, Equation (3) is extended with a
weight Wm representing the frequency reponse of each microphone m.

O(~u, ω) =
M−1

∑
m=0

Wm(ω) · Sm(ω) · e−jω∆m(~u) (4)

Digital Pulse Density Modulation (PDM) MEMS microphones oversample acoustic signals with a
given rate and convert it into a 1-bit representation. Retrieving the original acoustic signal is done by
filtering and decimating the PDM signal [31,32]. Many possible filter and decimation strategies have
been utilized by da Silva et al. [9]. For simplicity, the filter and decimation stage are declared as an
additional term dependant of ω, expressed as Hm(ω) for each microphone affecting the beamforming
result. Equation (4) therefore results in:

O(~u, ω) =
M−1

∑
m=0

Wm(ω) · Hm(ω) · Sm(ω) · e−jω∆m(~u) (5)

Dominguez et al. [3] described a method to compute the gain of a given microphone array in
ideal circumstances. Their approach is extended with the non ideal-characteristics Hm(ω) and Wm(ω).
The total gain of the microphone array in the desired frequency range can be computed by assuming
that the array is exposed to a single monochromatic wave emitted from the far-field region. Such a
wave can be approximated by the planar wave equation:

ψ(~v, t) = A · cos(~k ·~v−ω · t + φ) (6)

where~k represents the wave vector, ~v the vector representing the position of acoustic capturing,
A the amplitude of the wave and φ the phase offset of the wave. In air, the wave vector is the same as
the wave propagation direction ~u0 of the wave front while its magnitude is the wave number k so:

~k = k · ~u0 =
ω

c
· ~u0 (7)

Equation (5) can be rewritten in function of the incidence direction of the planar wave −~u0 and
the current steering angle ~u so:

O(~u, ω) =
M−1

∑
m=0

Wm(ω) · Hm(ω) · Sm(ω) · ejk·~rm(~u0−~u) (8)

The array pattern AP(k,~u0,~u) [3] is identified by Equation (9) and delivers the theoretical
beamforming pattern of the array.

AP(k,~u0,~u) =
M−1

∑
m=0

ejk·~rm(~u0−~u) (9)

One can define a frequency shaping function Fm(ω) for microphone arrays composed of non
ideal microphones. This function consists of the response of the microphones Wm(ω) and the filter
chain Hm(ω) applied during signal filtering at the beamforming stage. Depending on the application
requirements, one can define Hm(ω) so the effects Wm(ω) are equalized over a broad frequency range.

Sensors 2019, 19, 3906 5 of 37

Simultaneously, Hm(ω) can also enable to filter out undesired frequencies in order to target a specific
frequency range.

Fm(ω) = Wm(ω) · Hm(ω) (10)

2.3. Computing the Steered Response Power

Dominguez et al. [3] defined the output steered response power of the microphone array as a
function of observed surrounding signals. The output signal O(~u, ω) delivers the summed samples
at steering orientation ~u for signals emitted around the microphone array. If a microphone array is
exposed to a given broadband signal Si at steering vector ~u, one can identify N different frequencies
ωi with amplitude ai of the signal resulting in an output signal O(~u, Si, ω) so:

O(~u, Si, ω) =
N−1

∑
i=0

ai(~u) · Si(~u, ωi) (11)

The microphone and filtering shaping functions Fm(ω) impact the output steered signal so that
Equation (11) is rewritten as:

O(~u, Si, ω) =
M−1

∑
m=0

Fm(ω)
N−1

∑
i=0

ai(~u) · Si(~u, ωi) (12)

By considering that the microphone array is placed in an open, reverberation free environment
surrounded by K different broadband sound sources, one can compute the total acoustic signal
observed by the microphone array as:

O(~u, S, ω) =
M−1

∑
m=0

Fm(ω)
K−1

∑
i=0

O(~u, Si, ω) (13)

From here, the output power P(~u, S, ω) of the microphone array in each steering direction ~u can
be expressed as the sum of all squares of the computed steered output samples O(~u, S, ω) in each
steering direction ~u.

P(~u, S, ω) =
1

2π

∞∫

−∞

∣∣O(~u, S, ω)
∣∣2 dω (14)

2.4. Acoustic Beamforming on FPGA–Discrete Sampling

The above descriptions hold for acoustic signals considered in a continuous domain. However,
each microphone captures acoustic signals at discrete time intervals and positions. The position of
the microphone corresponds to the vector~r, while the time of capturing tc is represented by tc = n · T,
where T is the period between 2 consecutive samples and n the nth sample of measuring. Therefore,
the steering output of Equation (1) with delay dn is rewritten as:

o(~u, nT) =
M−1

∑
m=0

sm((n− dn) · T) (15)

so o[~u, n] becomes:

o[~u, n] =
M−1

∑
m=0

sm[n− ∆′m] (16)

Microphone manufacturing involves several processes which are performed within a given
tolerance margin. Different microphones will exhibit different signal responses. One of these
differences concerns the transduction time between acoustic capturing at the aperture hole and
the transmission at the microphone’s output [33]. The spreading between the microphone with the

Sensors 2019, 19, 3906 6 of 37

shortest time delay (i.e., zero delay) and a given microphone in the array is given by a constant sample
delay αm. This constant does not immediately influence the beamforming quality for lower frequencies
(i.e., less then 5 kHz). However, applying D&S on signals with higher frequencies (i.e., ultrasound)
may result in inaccurate or even false beams. Equation (16) is expanded so that:

o[~u, n] =
M−1

∑
m=0

sm[n− ∆′m − αm] (17)

The time delay ∆′m for a given microphone m can be obtained by computing the dot product
between the position of the microphone~rm and the unitary steering vector ~u normalized to the speed
of sound. Since the signal is sampled at discrete time intervals, Equation (2) is multiplied by the
sampling frequency fs (or 1

Ts
) and the result is rounded to the nearest integer value. The obtained

delay ∆′m corresponds to a sample index. We assume that αm from the above equation is not frequency
dependent and constant over a short amount of time. This sample delay value αm can thus mostly be
cancelled out by compensating it with a value Tdelay,m during the delaying process.

∆′m = round

(
fs ·
(
~rm · ~u

c
+ Tdelay,m

))
= round

(
1
Ts
·
(
~rm · ~u

c
+ Tdelay,m

))
(18)

For sufficiently high sampling frequencies fs the above equation can be rewritten so that:

αm ≈ fs · Tdelay,m (19)

and

∆′m ≈ round
(

fs ·
~rm · ~u

c

)
+ αm = round

(
1
Ts
·~rm · ~u

c

)
+ αm (20)

which results back in the original Equation (16). This approximation can be applied on PDM
microphones due to the higher sampling rates.

In the remainder of the text we will assume that the delay αm induced by each microphone can be
compensated and omitted from the equations, unless otherwise specified.

Equation (15) can be transformed into the z-domain by applying following z-domain delay
identity

Z(f [n− d]) = F(z) · z−d (21)

so that, along with the frequency shaping of the microphones and the filter during delay and sum:

O(~u, z) =
M−1

∑
m=0

Wm(z) · H(z) · Sm(z) · z−∆m(~u) (22)

The complete processing will be computed on embedded systems such as FPGAs. These platforms
typically compute signals with filters where a finite precision such as fixed-point or integer format
is used. Also, the quantization step at the Sigma-Delta Modulation (SDM) stage introduces a given
amount of noise at the final stage calculations [34–36].

The non-linear signal dependant error ξ(~u, z) can be described as the error induced by the
complete chain of computations and conversion so that Equation (22) can be written as:

O(~u, z) =
M−1

∑
m=0

Wm(z) · H(z) · Sm(z) · z−∆m(~u) + ξ(~u, z) (23)

The error ξ(~u, z) defines the total error compared to calculations with an infinite precision.
The error ξ(~u, z) can be estimated by computing the difference between the total beamforming response
of a given array in infinite precision and in the desired fixed point precision intended for embedded

Sensors 2019, 19, 3906 7 of 37

computations. If the infinite precision computations is defined with O(~u, z)in f and the fixed point
computations with O(~u, z) f ix, then ξ(~u, z) can be formulated as:

ξ(~u, z) = Oin f (~u, z)−O f ix(~u, z) (24)

Equation (22) can be rewritten so that O(~u, z) is a function of the incidence angle ~u0 of a
monochromatic wave and the steering angle ~u.

O(~u, z) =
M−1

∑
m=0

Wm(z) · Hm(z) · Sm(z) · z
1
c ·~rm ·(~u0−~u) + ξ(~u, z) (25)

Similarly to Equation (14), the average power P(~u, S, z) of the output in a given steering orientation
~u for a duration of L sample periods is expressed as:

P(~u, S, z) =
1
L

L−1

∑
i=0

∣∣Oi(~u, S, z)
∣∣2 (26)

The intention to obtain beamforming on embedded platforms such as FPGAs implies the
possibility to compute with a finite precision which introduces quantization noise. This can be
expressed by adding a ξ ′(~u, S, z) component to Equation (26) so that:

P(~u, S, z) =
1
L

L−1

∑
i=0

∣∣Oi(~u, S, z)
∣∣2 + ξ ′(~u, S, z) (27)

In a similar manner, the error ξ ′(~u, S, z) can be estimated by comparing the resulting power output
when using infinite precision Pin f (~u, S, z) with results obtained when using finite fixed point precision
Pf ix(~u, S, z) so that ξ ′(~u, S, z) can be expressed as:

ξ ′(~u, S, z) = Pin f (~u, S, z)− Pf ix(~u, S, z) (28)

3. Performance Metrics

Depending on the intended applications, microphone arrays come in several shapes and sizes
with a varying number of microphones. The placement of the microphones greatly affects the response
of the array and thus the effectiveness of the main lobe. The main lobe generally represents the DoA of
the acoustic wave to the microphone array. However, aside of the main lobe, many side and grating
lobes of different amplitudes can occur. Researchers have tried to minimize the effects of the undesired
lobes and therefore developed several metrics describing how well an array performs to a given
acoustic source. These metrics can be seen as a complementary set qualifying the possibility to detect
the AoA of a given sound source. Therefore, the proposed metrics are described and extended.

3.1. Beamwidth (BW)

A first metric described by Kelly et al. [37] is the BeamWidth (BW) of the main lobe.
The beamwidth of the main lobe is strongly related to the acoustic frequency and decreases with
increasing frequency. The beamwidth is defined as the region enclosed by the points of local minima
around the maximum of the beam where the minima are at least −12 dB lower then the maximum
of the beam (i.e., Pmax(~u,S,z)

4). The beamwidth is generally computed for a 2-dimensional response
in θ ∈ [0, 360◦]. Here, this principle is extended to the ratio between the area ABW(Ω) of the −12
dB values between α and β of the main beam and the total region of interest A(Ω) between a and b
(Equation (29)),

BW =

∫ β
α ABW(Ω)dΩ
∫ b

a A(Ω)dΩ
(29)

Sensors 2019, 19, 3906 8 of 37

where Ω represents the spherical coordinates of the azimuth θ and the elevation φ. This region of
interest comprises all steering angles used for the result, and is bounded by θ ∈ [θa, θb] and φ ∈ [φa, φb]

aperture. A smaller beamwidth generally corresponds to a higher probability of localizing a sound
source at a given AoA. This is especially the case when the beamwidth is computed for the main lobe.

3.2. Peak Side Lobe Level (PSLL)

The Peak Side Lobe Level (PSLL) is another metric used by Sun et al. [38] and Caorsi et al. [39]
and corresponds to the ratio between the main lobe Pm(~u, S, z) highest power value and the highest
second peak power value Psl(~u, S, z). This metric is generally given in a dB scale and is stated as
follows:

PSLL = 20 · log10

(
Psl(~u, S, z)
Pm(~u, S, z)

)
(30)

Lower PSLL values (PSLL ∈ [0,−∞)) correspond to a higher probability of finding a sound
source in a given direction. A positive PSLL value however indicates that the current steering vector
does not correspond to the main lobe detected by the beamforming.

3.3. Integrated Side Lobe Level (ISLL)

The Integrated Side Lobe Level (ISLL) is another metric proposed by Kelly et al. [37] and allows
to compute the ratio between the area outside the main lobe between α and β and the area of the
response of the array over the complete area of interest for a 2D response. Here, this principle is
extended to 3D by:

ISLL =

∫ β
α Pα,β(~u, S, z)dΩ
∫ b

a Pa,b(~u, S, z)dΩ
× 100% (31)

Here, the total region of interest is between a and b and Ω is a function of the azimuth angle θ and
the elevation angle φ. Boundaries α and β can be chosen arbitrarily. Often, the −3 dB beamwidth
boundaries are taken. A lower value for the ISLL combined with a narrow beam area between α and β

is desired.

3.4. Focal Index (FI)

The aforementioned metrics sometimes lack of representing the quality of a given beam pattern
efficiently. E.g., it is possible that the PSLL returns a 0 dB value, while the main lobe and the second
lobe share the same power value, but with optimal beam pattern in other steering orientations.
Kelly et al. [37] try to alleviate the shortcomings of these metrics by proposing the Focal Index (FI).

This metric is adapted here to take the steered response power value into account and is given by:

FI =

(
Aα,β

Aa,b

)(
1−

∣∣∣∣
√

P′
(1−α,β)(~u, S, z)

∣∣∣∣

)
(1− PSLLlin) (32)

The ratio between Aα,β and Aa,b defines the ratio between respectively the acceptance area of
the beam and the total area of interest. PSLLlin is the linear representation of the PSLL defined in

Equation (30). The factor
∣∣∣∣
√

P′
(1−α,β)(~u, S, z)

∣∣∣∣ corresponds to the average normalized beam pattern of

the array outside the acceptance area. A higher value of the FI ∈ [0, 1] represents a higher probability
of finding a sound source in the direction defined by the area between α and β. However, a negative
FI at the current expected location of a sound source corresponds to another lobe being detected as
more important. This also corresponds to a positive PSLL value.

Sensors 2019, 19, 3906 9 of 37

3.5. Directivity Index (DI)

The last metric discussed here is the Directivity Index (DI) which describes the ratio between the
power pattern in a given steering angle and the average power pattern in all steering angles and is
adapted from [3,18] as

DI =
P(~u0, S, ω)

1
Aa,b

∫ b
a P(~u, S, z)dΩ

(33)

where Aa,b denotes the area of interest between a and b and P(~u0, S, z) the power obtained from the
steering direction from which the sound source is susceptible to emit. A higher DI corresponds to a
higher probality of finding an acoustic sound source in that particular steering angle.

3.6. Steered Metrics

The above mentioned metrics give an estimation of the performance of a given microphone
array when steering at a particular orientation to a particular emitting sound source. Sound sources
may not be located in the steering orientation of choice but in any random orientation. In order to
evaluate a given microphone array to a given sound source emitting at any point in space, all the
metrics are computed on the closest steering angle to the direction of arrival of a discrete sound
source, while the sound source is moved over several discrete positions around the microphone array.
The average metric, the 75% (i.e., Q3 factor) interval and the minimum and maximum observed metric
are computed. The Q3 factor is obtained by computing the Median Absolute Deviation (MAD) on the
obtained values, with X̄ the expected average of the metric and X~u the value on steering angle ~u of
the metric.

MAD = median
(∣∣X~u − X̄

∣∣
)

(34)

4. CABE: Cloud-Based Acoustic Beamforming Emulator

4.1. Architectural Overview

To facilitate beamforming computations in the research group, the CABE platform is developed
which consists of 3 major parts. In the back-end several multi-core computers perform the beamforming
computations (Emulator). The second part consists of a webserver running the User Web Interface
and the Emulator Task Manager ensuring the connection between the back-end and the users. In the
last part, users utilize the CABE client application to initiate new beamforming computations and to
visualize the results.

The computers running the emulator also offer the possibility to compute the performance
metrics for an emulated microphone array through the Metric Generator. The emulator computers
also have an Hardware Description Language (HDL) package generator to generate HDL packages
for implementations on FPGA. The User Web Interface facilitates the connection between the client
application and computing machines in the back-end. This interface also schedules the requests of
the users via the Emulator Task Manager. The communication between the entities is performed
by means of RESTful Application Programming Interface (API) calls including the transfer of files.
A general overview of the system is presented in Figure 1. All back-end parts and client applications are
developed in C++ using standard libraries. The Web User Interface and Task Manager are developed in
PHP as a web service so that access for both client and back-end applications are facilitated. Calculating
beamforming algorithms can be compute-intensive and the processing time depends on the number
of microphones, the number of steering angles and the number of sound sources. Therefore, the
platform takes advantage of utilizing several concurrent back-end multicore computing machines.
All back-end applications and web services are running on Ubuntu 18.04 LTS servers while the client
application can be used on Linux and Windows machines. The cloud-based platform can be found at
https://projects.rapptor.vub.ac.be/CABE/.

https://projects.rapptor.vub.ac.be/CABE/

Sensors 2019, 19, 3906 10 of 37

Emulator

Metric
Generator

HDL Package
Generator

Emulator
Task Manager

User Web
Interface

AcLocEm
Client

Back-end Front-end

Multicore Computing Machines Web Service Host Local Machine

Figure 1. Architectural overview of CABE. The applications on the left side reside on several computing
machines which compute results of beamforming, metrics and generate FPGA Hardware Description
Language (HDL) packages. The Task Manager and the User Web Interface allow to queue and schedule
new tasks while the CABE client allows to generate new emulation tasks and to visualise results.
The back-end applications are not visible towards users.

4.2. Emulator

The emulator computes the responses of a user defined microphone array along with a set of
processing constraints and a set of defined acoustic sources. The emulator is designed following a
modular architecture so that currently researched algorithms can be included, but also allowing easy
integration of new methods in the future. The general overview of the emulator is given in Figure 2.
Shared objects are used so that the source code can be subdivided into smaller manageable libraries.
This usage is intended for the sound sources, the beamforming methods and the frequency shaping
methods since virtually any combination of these are possible. The general processing flow of the
emulator is categorized in 5 major sequential steps:

1. processing input parameters,
2. microphone array response computation,
3. generating output response files,
4. computing metrics,
5. generating HDL package.

Steps 4 and 5 are optional and are delivered at the end of the processing flow. These steps can also
directly be requested in case Steps 1 to 3 have already been carried out. In the next paragraphs, the
processing flow of the emulator up to obtaining the steered response power, the performance metrics
and the HDL package generation are detailed.

Sensors 2019, 19, 3906 11 of 37

Emulator

Acoustic emitting

Sound source

Periodic

Modulated

From File

Microphone Array

Microphone SubArraysArray DSB

DSB &
Delaytable

SRP

Microphone

Sampling
method

Beamforming method

DSB &
Delaytable

Frequency
Shaping
Function

Input/Ouput

Write Samples

Read Samples

Write SRP
Results

Process Input
Parameters

1

1

1

1

Figure 2. Overview of the emulator application which computes the beamforming on a given
microphone array. The emulator is composed of 3 major parts. The first part ensures proper acoustic
information generation, the second part computes the beamforming while the last part handles file
operations. Modules marked with ‘1’ contain time and position information. Grayed out modules
denote modules to be inherited by shared objects, allowing a more flexible implementation of features.
A microphone array can also define multiple subarrays.

4.3. Processing Input Parameters (Step 1)

The emulator is capable of computing the beamforming response for a user defined microphone
array with a custom set of parameters. These parameters and the layout of the microphone array in the
three dimensional space are stored into configuration files including a simulation file, a microphone
array file with the microphone types and the definitions of the subarrays for power savings [10]. There
is also a file for the appropriate Digital Signal Processing (DSP) beamforming algorithms together
with the chosen steering pattern. Optionally a file containing sound sources can also be provided. All
configuration files are defined using the YAML Ain’t Markup Language (YAML) format; a human
readable data serialisation format [40] and are linked in a main simulation file.

4.4. Microphone Array Response Computation (Step 2)

In Section 2 we described the mathematical background of microphone arrays. In this paragraph
these principles are extended to embedded systems computing beamforming methods which sample
acoustic signals in the discrete time domain. Moreover, since the development and the implementation
of these algorithms targets FPGAs, the errors induced by signal quantization and errors related to
computation with finite precision need to be estimated.

4.4.1. Acoustic Capturing

Each acoustic source i with position ~Pi emits a given acoustic wave starting from a time t0. Each
of the microphones in the array captures acoustic waves at position~rm and sample time ts =

n
fs
= n · T.

By calculating the time of flight between each acoustic source and each microphone, one can obtain
the total received signal Sm[n] via superposition (Equation (35)).

Sm[n] =
N−1

∑
i=0

Sourcei


 n

fs
−

∣∣∣~rm − ~Pi

∣∣∣
c

− Tdelay,m


 (35)

Here, the condition n
fs
−
∣∣∣~rm−~Pi

∣∣∣
c − Tdelay,m ≥ t0 must be met (i.e., causal systems) so that an

acoustic wave emitted from a sound source is captured. The sample obtained can be considered ideal
and needs to be shaped according to the specifications of the microphones. Therefore, the microphone

Sensors 2019, 19, 3906 12 of 37

characteristics are taken into consideration during the emulation. This is done in two consecutive
steps:

1. In the first step a frequency response shaping on the acoustic signal is applied by means of a
convolution filter. This shaping is performed in time domain for easier streaming of samples.
The frequency response of each microphone type is converted into FIR coefficients by the
frequency sampling method [41].

2. The second step consists of converting the output of the frequency shaping function into
the right output format proposed by the microphone. Currently supported formats include
double precision to mimick analog samples, Pulse Coded Modulation (PCM) and Pulse
Density Modulation (PDM). Conversion to PDM format needs to be carefully chosen to match
the microphone’s characteristics. Here 4th and 5th order Sigma-Delta Modulation (SDM)
converters with an Over Sampling Ratio (OSR) between 15 and 64 are generally used [31,42,43].
The appropriate architectures are designed with the Delsig Matlab toolbox [44].

In case the signal amplitude overloads the threshold of the microphone’s sensitivity, the acoustic
signal could produce uncorrelated results to the original signal. Therefore, signals with amplitude
values beyond the sensitivity level are clipped to the sensitivity level [45].

4.4.2. Delay-and-Sum

The delay and sum principle is based on the assumption to delay a discrete acoustic information
based on sample indices. All necessary delaying values for each steering orientation are generated
beforehand and stored in a delay table. Each row corresponds to a given steering orientation while each
column corresponds to a given microphone of the (sub)array. Each cell of the table thus corresponds
to the delay per steering angle per microphone. The relationship for each delay in Equation (18) is
adapted to avoid negative indices causing non causal signals. Therefore, for each steering orientation
~u the delay table D[~u, m] is reorganized so that:

D[~u, m] = D[~u, m]−min
[
D[~u, :]

]
(36)

where min
[
D[~u, :]

]
and m respectively denote the minimal value of each row and microphone m.

An indexable ring buffer with a length equal to the maximum delay value is utilized. A sum
of all the delayed samples per steering orientation is given per sample interval. Figure 3 depicts the
processing flow of the delay and sum algorithm, along with the delay table.

m1 m2 m3

d1,1 d1,2 d1,3~u1

m1 m2 m3

d2,1 d2,2 d2,3~u2

m1 m2 m3

d3,1 d3,2 d3,3~u3

m1 m2 m3

d4,1 d4,2 d4,3~u4

m1 m2 m3

d5,1 d5,2 d5,3~u5

Steering vectors

Microphones

m1

m2

m3 Delay buffers

o[~u, n] =
M−1∑
m=0

sm[n− ∆′m]

Figure 3. Delay and sum algorithm using a delay table. Grayed out cells of the delay buffers are
summed together to form a new sample at the output.

Sensors 2019, 19, 3906 13 of 37

4.4.3. Steering Vectors

The delay and sum algorithm relies on the steering vectors ~u to perform beamforming in different
orientations. Four families of steering orientations are implemented (Figure 4):

• Equalpolar Distribution (A): 2D steering vectors in an equal radial pattern on one of the Cartesian
planes. A start and stop angle can be provided limiting the “view area” of the microphone array.
• Hypercube Distribution (B and C): 3D steering following a hypercube distrubution.

The distribution can be on the cube itself or can be normalized to a unit sphere.
• Hyperplane Distribution (D and E): enables to steer following a grid pattern onto one of the

planes of the hypercube method. A normalized pattern can also be used.
• Fibonacci Lattice (F): 3D steering following the Fibonacci lattice distribution [46]. Here only the

spherical distribution is available.

−1
0

1 −1

0

1
−1

0

1

A

−1
0

1 −1

0

1
−1

0

1

B

−1
0

1 −1

0

1
−1

0

1

C

−1
0

1 −1

0

1
−1

0

1

D

−1
0

1 −1

0

1
−1

0

1

E

−1
0

1 −1

0

1
−1

0

1

F

Figure 4. Vectors distributed following the (A) ‘Equalpolar Distribution’, (B) ‘Hypercube Distribution’,
(C) ‘Hypercube Distribution Normalized’, (D) ‘Hyperplane Distribution’, (E) ‘Hyperplane Distribution
Normalized’ and (F) ’Fibonacci Lattice.

4.4.4. Delay-and-Sum between Subarrays

Each microphone array can be composed of several groups of microphones forming subarrays.
One can compute the proper delay table for each microphone subarray such as provided by
Equation (36). When combining the output signals O(~u, z) however, all subarrays need to be aligned
properly to avoid signal degradation. Therefore, a delay table containing the delays per steering vector
~u and per subarray is computed via a two-steps procedure.

• For each subarray s, the minimum dot product D[~u, s] (Equation (37)) between the steering vector
~u and the positions~rm of all microphones is computed. The minimal dot product is indexed in a
temporary table. This step is repeated for all steering orientations.

• At the level of the main array, the delay table is computed by applying Equation (38) on the
obtained distances from the subarrays for each of the steering orientations.

D[~u, s] = min


round

(
fs ·
(
~u ·~rm

c
+ Tdelay,m

))
 (37)

D[~u, s] = D[~u, s]−min
[
D[~u, :]

]
(38)

Sensors 2019, 19, 3906 14 of 37

4.4.5. Signal Demodulation and Frequency Shaping Function

The last stage of the computations includes the frequency shaping functions which allows to
choose the desired frequencies at the end of the computations. Several strategies have been proposed in
the literature for the various types of microphones. Depending on the type of microphone, decimating
the signals before equalization has to be performed.

Analog MEMS and Condenser Microphones

Analog microphones are sampled with Analog to Digital Converters (ADCs) and streamed
in PCM format in the D&S algorithms [47]. One strategy consists in filtering the samples with a
low-pass Finite Impulse Response (FIR) filter before displaying the result [48]. Netti et al. however [49]
propose an adaptive FIR filter technique in conjunction with a D&S to detect the position of vehicles
towards environmental noise monitoring. Zimmermann et al. [50] presented a real-time approach by
decimating the samples with a Cascaded Integrator Comb (CIC) filter followed by a FIR filtering for
an acoustic camera.

Digital PDM Microphones

PDM (MEMS) microphones typically oversample the signals with a factor of 15 up to 64. Acoustic
decimation and filtering must be applied to retrieve the acoustic information. Several strategies have
been carried out [47]. A common strategy consists in decimating the PDM signal by means of a CIC
filter. CIC filters offer the advantage of avoiding the required number of multiplications of a FIR filter
by only adding and subtracting the samples during filtering. This filter is also commonly known as
the “sync” filter due to its resulting frequency response [51]. Therefore, a lower order CIC filter is used
in conjunction with another family of filters. Some proposed methods include further decimation by a
cascade of halfband filters [52,53]. Halfband filters are a specialized subset of FIR filters where half of
the coefficients are zero and allow to decimate the signals by removing signal components beyond
a quarter of the original sampling frequency (i.e., after CIC filtering) in order to satisfy the Nyquist
theorem. A lower order FIR compensation filter equalizes the distortion induced by the CIC filter.
Another strategy consists by immediately filtering the output of the CIC filter by a FIR compensation
low-pass filter [54].

Signal Demodulation and Signal Shaping in the Emulator

A few strategies are provided in the current emulator, including the filtering of PCM samples
with a FIR filter and the demodulation of PDM samples. Strategies including a CIC filter followed by a
cascade of halfband filters and a low-pass FIR filter, an implementation using a CIC filter followed
by a FIR compensation filter and at last a CIC filter followed by a bandpass filter in the ultrasound
frequency range are implemented.

4.4.6. SRP

The Steered Response Power (SRP) calculations take place at the last stage of the computations.
Users can define the number of samples L to be used to compute the SRP (Equation (26)). Ideally, a
power of 2 length is preferred so that arithmetic shift operations on FPGA can be used as division.
Two SRP modes are supported during emulations: streaming and block mode. The former one is
aimed to allow a more fine grained response where the evolution of the response can be visualized.
Here, a sliding window with length L is used and at each input a new SRP value is computed. In
the second method, a SRP value is computed every L samples and allows to reduce the amount of
data to be transferred and visualized. This is also the preferred implementation for FPGAs. Thanks to
the Parseval’s theorem, both approaches are computed in the time domain enabling streamed SRP
computations.

Sensors 2019, 19, 3906 15 of 37

4.4.7. Commutative Computations

The operations involving delay and sum, filtering and decimation have been proposed in different
commutative sequences. This is especially the case for PDM microphones where the decimation and
filtering can be computed prior to the D&S as well as afterwards. Moreover, a hybrid solution has been
proposed by da Silva et al. [10,55]. Following beamforming sequences are currently supported by the
emulator (Figure 5):

1. Delay and Sum + Filtering for analog based microphones,
2. Delay and Sum + CIC + Filtering for PDM based microphones,
3. CIC + Filtering + Delay and Sum for PDM based microphones,
4. CIC + Filtering + Delay and Decimation and Sum.

Analog mi-
crophones

Delay and Sum Filtering SRP

Digital PDM
microphones

Delay and Sum CIC ↓ + Filtering ↓ SRP

Digital PDM
microphones

CIC ↓ + Filtering ↓ Delay and Sum SRP

Digital PDM
microphones

CIC ↓ + Filtering Delay ↓ and Sum SRP

Figure 5. Delay and sum followed by a filtering stage for analog and digital based microphones. A “↓”
denotes a decimation step.

Modifying the order of operations allows to select the appropriate method where the balance
between required processing capabilities and possible accuracy has to be considered. In case of the
last options, the number of parallel filters is directly related to the number of available microphones,
while in options 1 and 2 this number scales with the number of steering angles. In case the number of
microphones m is smaller than the number of steering angles, strategy 3 will require more processing
capabilities. However, the delay and sum process offers better localization results with a higher
sampling rate. Strategy 4 has been proposed by da Silva et al. [9,10] as a hybrid solution where
resource consumption on FPGA has been reduced while providing similar computation results as in 3.
Implementing methods where the filtering is performed prior to the delay and sum method requires
special care when computing the delay table. In Equation (20) a signal delay mechanism proper to each
microphone is provided. Highest signal realignment accuracy is achieved with the highest possible
sampling frequencies. First decimating and filtering the samples before realigning them will cause
greater signal distortion. Therefore, an additional buffer is used at each microphone input where
signals are delayed according to the signal delay property of the respective microphone.

4.5. Response Results Output (Step 3)

Results of each beamforming response are stored into an output directory. After computations,
this directory contains the original input files utilized, i.e., sound sources, emulation file, SDP-file and
microphone array. A file containing the delay tables utilized during delay and sum is also available.
This file is organized as the table depicted in Figure 3 in a Comma Seperated Values (CSV) format.
The SRP results are stored in a second CSV-file. Each row corresponds to a computed set of acoustic
sources while each column represents a steering vector. The acoustic sources are subdivided into

Sensors 2019, 19, 3906 16 of 37

dynamic and static sources. The static sources can be found in the sound sources file. The dynamic
sound source however can differ from the frequency and or position as described in the sound source
file. To allow coherent retrieval of each “response - acoustic” source property, the parameters used to
compute each response against this source are stored in an additional file. This file contains the type of
source, the frequency and the position. For each of the output files an additional Matlab compatible file
is created for easy processing in Matlab. The other files are intended for the CABE client and contain
additional information regarding file organization. Aside from the response output files, the emulator
also generates a project file containing a link to all other files. This file is processed by the CABE client
application and also contains the eventual error codes occurred during processing as well as the time
of processing, the CPU model used, the number of computing cores and the amount of RAM memory
on which the emulation has been performed. This serves as statistics in order to predict the amount of
processing time a new emulation would take. The project is generated following the YAML file format.

4.6. Metrics Generator (Step 4)

The metrics generator computes the proposed metrics so that the beamforming performances of
a given microphone array can be evaluated and are implemented in an independent fashion so that
the beamforming results can be re-evaluated when new metrics are added. This especially allows to
(re-)evaluate complex microphone arrays which require long processing times in a faster way and to
avoid duplicate computations.

The results of the metrics are stored in a dedicated subfolder of the output folder. All computed
metrics are linked into the output project file of the computed beamforming.

4.7. HDL Package Generator (Step 5)

The provided beamforming methods consist of well known building blocks such as a delay and
sum module, CIC filters, FIR filters, halfband filters, etc. Aside of a few parameters such as the tap
coefficients of the filters, the order of the CIC filter, the amount of microphones, the delay tables and
the order of computations, these blocks can be approached as generic building modules. Therefore, all
modules are wrapped into a module generator that defines the required parameters for each block. At
a higher level, all modules are interconnected following the configuration of the required processing
flow of the microphone array, which is extracted from the microphone array processing emulation data
structures. The output is stored into a separate folder containing only the VHDL code. In this research
we primarily target the Zynq based platforms from Xilinx since these contain both a programmable
and processing logic [56] facilitating in situ processing of the beamforming information on the local
processor [10]. Currently, only the “CIC + Filtering + D&S for PDM based microphones” architecture
can be generated. The other methods, due to the possible high number of steering vectors, need
advanced data flow scheduling schemes which are currently not automated by the tool.

4.8. User Web Interface Database and Task Manager

The User Web Interface acts as a proxy between the client application and the emulators running
in the background. The User Web Interface is written in PHP, where GET and POST requests can be
issued in order to retrieve or add information into the MySQL database. The web interface comprises
4 major parts:

• the database from which the status of each of the emulations can be followed,
• the module which enables the client application to retrieve the necessary configurations and

constraints for generating proper emulation files,
• the Task Manager enables to schedule emulations and to communicate with the emulator

computers in the back-end and,
• a module keeping track of the required processing time per type of machine and per type of

emulation request.

Sensors 2019, 19, 3906 17 of 37

The communication between the client application and webserver is performed by means of
RESTful API calls. Configuration files for the client application are generated in the YAML format in
the webserver following the content of the database. The issued emulations per user and the settings
for the several available processing stages are transferred following this pattern.

The database keeps track of the emulations which have to be launched on the back-end computers.
Therefore, small PHP scripts allow an idle back-end computer to POST a request for queued emulations.
If an emulation is still queued for processing, it will be transferred to this idle emulation computer.
The status of this emulation is changed to “being processed” via a mutex to avoid redundant
computation on multiple computers.

A last part of the interface serves to estimate the amount of time required to perform a given
beamforming. This is especially the case when running large emulations with many steering vectors.

4.9. CABE Client

In the first part, users utilize the CABE client application (Figure 6) which automates the generation
of the required input files for the emulator and uploads the parameters to the webserver. This
application also downloads the available information regarding the filtering and beamforming chains
that can be selected. Once a complete emulation has been set up, users can archive the configurations
and upload the complete emulation to the webserver. Once uploaded, users can follow the progress of
the emulations in a second tab. Several options are available, including the possibility to download the
uploaded emulations, to request to queue the emulation for processing, to download the beamforming
results and to (re-)compute metrics. When the results are available, users can visualize the beamforming
results with a dedicated graphing tool. All results are stored into the webserver’s database so that
users can retrieve them on any computer.

Figure 6. CABE client application. On the Left Top side users can create and upload new emulations
to the User Web Interface. On the Left Bottom side, a list of emulations can be retrieved. Emulations
which are ready can be visualized can be plotted with the available plotting tool. On the Right Top a
waterfall diagram and on the Right Bottom side a 3D polar plot are shown.

In the second part, the client uses the information from the obtained emulation to generate
appropriate graphs. Depending on the type of steering method utilized, a Cartesian or a spherical
graph is generated. In case that a 2D steering mechanism is used, a Waterfall diagram is generated.
The SRP is plotted as a function of the steering angle and the frequency and the ability is provided

Sensors 2019, 19, 3906 18 of 37

to move the camera (view point) anywhere around the graph. From the waterfall diagram, it is also
possible to request a polar plot for a specific frequency. Choosing the minimum and maximum values
for the frequency, steering angle and SRP values is also possible. All the graphs are generated with
the OpenGL library [57] which is freely available. All graphs can be exported to a Portable Document
Format (PDF) file. This is done using the open source library of gl2ps [58].

If 3D steering vectors are used, a spherical graph is generated. All the vectors composing the
steering vector space are first sorted out via a triangle splitting algorithm in non overlapping triangles.
Since the algorithm has a complexity of O(n2) and to increase plotting speed, the obtained triangles
are stored into a CSV-file for reuse when the same graphs are regenerated. This graph does offer
clipping planes. Exporting the graphs to a PDF-file is possible and is done in a similar fashion as for
Waterfall diagrams.

5. Demonstration of the CABE Platform

The cloud based emulator is capable of computing a beamforming for any given microphone
following several steering methods. In this section, we demonstrate and evaluate the computed results
of two different microphone arrays. Both arrays have also been manufactured in order to validate
the platform, as will be explained in Section 6. The arrays evaluated consist of the ultrasound PDM
enabled SPH0641LU4H microphones [42]. These microphones operate in a sampling frequency range
between 1 MHz up to 4.8 MHz and are capable of capturing acoustic waves up to 80 kHz.

1. The first array—the Ultrasonic Multiple Access Positioning (UMAP) array—to be evaluated
consists of 12 microphones placed in 2 rings, see diagram in Figure 7. The primary purpose
of this array is to evaluate capability of finding an ultrasound source in given AoA. The inner
subarray - subarray 1 - is composed of 4 microphones located on a radius of 20.32 mm from the
center. The outer subarray is composed of the 8 remaining microphones where all microphones
are located on a radius of 40.64 mm from the center. Although not provided in the emulation file,
the Printed Circuit Board (PCB) provides a hole in the center (Figure 7 Right) so that a speaker or
camera can be mounted for additional experiments.

Subarray 1: radius=20.32mm (800mil)

Subarray 2: radius=40.64mm (1600mil)

Figure 7. Microphone locations on the UMAP array (Left). The outer subarray consists of 8
microphones which have an offset of 22.5◦ to the axis. The 4 inner microphones are all located
on 20.32 mm from the center. The PCB of the array allows to mount an additional camera or speaker
for several applications (Right).

2. The second array—the Quarter array—used in the experiments consists of 18 microphones placed
in 2 arcs and is shown in Figure 8. This array is designed to help visually impaired people and is
mounted on the front head of the person. A transducer mounted on top of the array emits an
ultrasound pulse which is reflected by nearby located objects. Measuring acoustic information
coming from the back is not desired. Therefore, the array is designed to steer in an aperture angle
of a quarter circle, i.e., 90◦, in the direction of the convex side. This array consists of 2 subarrays

Sensors 2019, 19, 3906 19 of 37

with 9 microphones each. The outer subarray has a radius of 114.3 mm while the inner subarray
is arched at 94.3 mm. The shape of the array allows to have a limited number of microphones
when covering a limited amount of the steering aperture.

Subarray 1: radius=94.3mm (3713mil)

Subarray 2: radius=114.3mm (4500mil)

Figure 8. The Quarter array consisting of 18 microphones (Top). The most outer microphones describe
an aperture angle of 90◦ around the vertical axis. The PCB of this array (Bottom) enables to mount
additional devices at the center of arcs describing the placement of the microphones.

For both arrays, a 4-layer PCB-board is used together with the necessary via-stitching and carefully
layed tracks in order to avoid signal degradation from the PDM microphones.

5.1. Frequency Response from a Single Acoustic Emitting Position

Evaluating the performance of the proposed microphone arrays is done in several stages. In a
first stage, the performance of the array is evaluated by computing the waterfall diagram over the
available frequency range of the microphones. This waterfall diagram is computed while utilizing
the “Equalpolar” steering distribution. Along with the waterfall diagram, the performance metrics
describing the performance of the arrays over the complete frequency range are computed. During this
experiment the performance of the arrays while disabling subarrays is evaluated. In all experiments,
a single acoustic sound source located at 5 m distance from the array at an angle of 180◦ and 90◦ for
respectively the UMAP array and the Quarter array is used. The UMAP array is evaluated in 360◦ with
128 steering orientations while the second array is evaluated between 45◦ and 135◦ with 64 steering
orientations. The results are computed by applying a monochromatic sound source with frequencies
ranging from 100 Hz to 80 kHz in steps of 100 Hz. The PDM frequency is set to 4.8 MHz so that a
maximum allowed acoustic frequency of 80 kHz can be captured. The experiments are carried out
with the beamforming method where the acoustic PDM signals are first filtered and decimated before
being delayed and summed. The filtering and decimation sequence is as follows:

1. CIC filtering: decimation factor of 15 with a differential delay of 2.
2. FIR filter: A compensation filter of 64 taps where the effects of the CIC filter and the microphone

characteristics are flattened within a margin of 2 dB in a frequency range between 1 and 65 kHz.
3. Halfband filter 2: A filter of order 32 with a cutoff frequency set to 80 kHz.
4. A last decimation step which decimates with a factor of 2.

The input signals from each of the microphones is therefore decimated by a factor 30, resulting
in an output sampling frequency of 160 kHz which is used to generate the delay tables for the D&S
beamforming method.

Sensors 2019, 19, 3906 20 of 37

The waterfall diagrams of both arrays are shown in Figures 9 and 10. The effects of disabling
the subbarays in the microphone array results in a lower probability of finding a sound source in
a given AoA. In case of the UMAP array, when only the inner subarray is enabled, the resulting
waterfall diagram shows several grating and side lobes. The regular pattern of these lobes is due
to the spacing of the 4 inner microphones which are placed in a square enhancing spatial aliasing.
To mitigate the effects, the outer 8 microphones are placed in a circular pattern. When all microphones
are enabled, the beamforming results in a higher probability to find the AoA of a given sound source.
The waterfall diagram of the Quarter array shows a higher probability of finding a sound source at
90◦ than the UMAP array, for all combinations of enabled subarrays. This is mainly due to utilizing
more microphones in a larger array. The waterfall diagrams allow to visually assess the beamforming
quality. However, describing the quality of beamforming by means of the metrics enables to identify
the frequencies on which the array would result in the highest probability of finding a sound source.

0 90 180 270 360
0

20

40

60

80

Angle(degrees)

Fr
eq

ue
nc

y
(k

H
z)

Subarray 1

0 90 180 270 360
0

20

40

60

80

Angle(degrees)

Fr
eq

ue
nc

y
(k

H
z)

Subarray 2

0 90 180 270 360
0

20

40

60

80

Angle(degrees)
Fr

eq
ue

nc
y

(k
H

z)

All subarrays

Figure 9. Waterfall diagram of the UMAP array. When only the 4 inner microphones are enabled, the
diagram shows a lot of side and grating lobes (Left). These lobes are attenuated when using the outer 8
microphones (Middle). The (Right) graph shows the best waterfall diagram for this array when all
microphones are enabled. In all cases, a monochromatic sound source with increasing frequency is
positioned at a distance of 5 m at 180◦.

45 90 135
0

20

40

60

80

Angle(degrees)

Fr
eq

ue
nc

y
(k

H
z)

Subarray 1

45 90 135
0

20

40

60

80

Angle(degrees)

Fr
eq

ue
nc

y
(k

H
z)

Subarray 2

45 90 135
0

20

40

60

80

Angle(degrees)

Fr
eq

ue
nc

y
(k

H
z)

All subarrays

Figure 10. Waterfall diagram of the Quarter array. When only the 9 inner microphones are enabled
(subarray 1), the diagram shows a lot of side and grating lobes (Left). These lobes are attenuated when
using the outer 9 microphones (Middle). The (Right) graph shows the best waterfall diagram for this
array when all microphones are enabled. In all cases, a monochromatic sound source with increasing
frequency is positioned at a distance of 5 m at 90◦.

The first metric to be described is the directivity index of the UMAP and the Quarter arrays
which are shown in Figure 11. For both arrays, the directivity is computed at the supposed AoA of
the acoustic source. In case of the UMAP array, this metric peaks (when all microphones are enabled)
at approximately 17.1 kHz and describes other peaks around 25, 35 and 55 kHz. The Quarter array
shows a more regular directivity between 20 and 48 kHz.

Sensors 2019, 19, 3906 21 of 37

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

D
ir
ec
ti
v
it
y

UMAP array

Subarray 1
Subarray 2

All subarrays

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency (kHz)

D
ir
ec
ti
v
it
y

Quarter array

Subarray 1
Subarray 2

All subarrays

Figure 11. Directivity index of the UMAP array (Left) and the Quarter array (Right). Higher values are
preferred. The UMAP array shows local optima describing higher probability to find a sound source
for that particular frequency.

The second metric described here is the beamwidth and describes the width of the main lobe.
A thinner main lobe results in a higher ability to discriminate multiple sound sources from each other.
This latter bounded to the main lobes and not to the grating and side lobes. Figure 12 depicts the
beamwidth for the UMAP and the Quarter array. In general, the beamwidth decreases with increasing
frequency. The beamwidth here is depicted as a relative metric and is lower for the UMAP array than
for the Quarter array.

0 20 40 60 80

0.25

0.5

0.75

1

Frequency (kHz)

B
ea
m
w
id
th

UMAP array

Subarray 1
Subarray 2

All subarrays

0 20 40 60 80

0.25

0.5

0.75

1

Frequency (kHz)

B
ea
m
w
id
th

Quarter array

Subarray 1
Subarray 2

All subarrays

Figure 12. Beamwidth of the UMAP array (Left) and the Quarter array (Right). Lower values indicate
thinner main lobe at this orientation. The beamwidth generally decreases while the frequency increases.
One should note that the beamwidth of the Quarter array is computed over an area 4 times smaller
than for the UMAP array, resulting in values approximately 4 times larger than when computed for
a complete circle. Although one may expect a fluent decreasing trend, the peaks appearing beyond
20 kHz result from the treshold function including the second smaller lobe into the computations.

The directivity and the beamwidth metric describe how a supposed main beam performs
compared to the complete area of interest of the microphone array. However, in case one utilizes
small arrays, the location of the supposed AoA may not show the main peak of the beamforming
result. The PSLL allows to confirm if the supposed main beam corresponds to the detected main beam.
Figure 13 shows the PSLL of the UMAP and the Quarter array. Here a lower negative value of the
PSLL offers a higher probability to find the AoA of the sound source. Positive PSLL values indicate
that the beamforming of the array detects another AoA than the supposed sound source locations.
When all subarrays are enabled the PSLL values of the UMAP array allows to detect the main beam up
to approximately 42 kHz. From this point, the PSLL values are positive with an exception at 54.4 kHz.
The Quarter array shows lower PSLL values up to 20 kHz. When all subarrays are enabled, the main

Sensors 2019, 19, 3906 22 of 37

peak can be found up to a frequency of approximately 55 kHz. Local minima in both graphs can be
correlated with the directivity where a local optimum is observed at the same frequencies.

0 20 40 60 80

−30

−15

0

15

30

Frequency (kHz)

P
ea
k
si
d
e
lo
b
e
le
ve
l
(d
B
)

UMAP array

Subarray 1
Subarray 2

All subarrays

0 20 40 60 80

−30

−15

0

15

30

Frequency (kHz)

P
ea
k
si
d
e
lo
b
e
le
ve
l
(d
B
)

Quarter array

Subarray 1
Subarray 2

All subarrays

Figure 13. PSLL values of the UMAP array (Left) and the Quarter array (Right). Local minima can be
observed for the UMAP array when all subarrays are enabled. Positive values indicate that the current
supposed main beam is superseeded by another peak.

The last metric—the FI—combines the beam pattern values outside the main beam along with
the linearized PSLL values of the supposed main beam. A value between 0 and 1 indicates that the
main beam could be found at the current expected steering angle. Negative values relate to the PSLL
values and indicate that the current steering angle does not converge to the main beam observed by
the microphone array. In case of the UMAP array, positive values can be found up to 42 kHz while the
Quarter array ranges up to 55 kHz (Figure 14).

0 20 40 60 80
−0.5

0

0.5

1

Frequency (kHz)

F
o
ca
l
In
d
ex

UMAP array

Subarray 1
Subarray 2

All subarrays

0 20 40 60 80
−0.5

0

0.5

1

Frequency (kHz)

F
o
ca
l
In
d
ex

Quarter array

Subarray 1
Subarray 2

All subarrays

Figure 14. FI of the UMAP array (Left) and the Quarter array (Right). In case of the UMAP array, the
FI rapidly drops to a minimum and crosses the Abscis at 42 kHz (all subarrays enabled). The Quarter
array shows a better FI which crosses the Abscis at approximately 55 kHz (all subarrays enabled).

From the above mentioned metrics, a few frequencies can be chosen so that beamforming would
result in optimal detection of AoA. The conditions to be met are:

• Optimal (higher) values for the directivity,
• The lowest possible beamwidth,
• The lowest possible (negative) values for PSLL and,
• Highest (positive) values for FI.

In case of the UMAP array, some of the optimal frequencies at which a sound source can be found
at 180◦ are 17.1, 25.1 and 54.4 kHz. For the Quarter array the selected frequencies are 23.7, 36.2 and
48.1 kHz. In the latter case, the sound source is found at an angle of 90◦. Based on the metrics, other
frequencies can also be selected. In Figure 15 the polar plots of the selected frequencies for the UMAP

Sensors 2019, 19, 3906 23 of 37

array are depicted. In Figure 16 the polar plots of the selected frequencies for the Quarter array are
shown. The polar plots of the Quarter array are bound between 45◦ and 135◦, which correspond to the
steering orientations used during the computations.

0

45

90

135

180

225

270

315

0−25−50−75

UMAP SRP (dB) at 17.1kHz

0

45

90

135

180

225

270

315

0−25−50−75

UMAP SRP (dB) at 25.1kHz

0

45

90

135

180

225

270

315

0−25−50−75

UMAP SRP (dB) at 54.4kHz

Figure 15. Polar plots of the UMAP array at 17.1 kHz (Left), 25.1 kHz (Middle) and 54.4 kHz (Right).
These plots are bound between 0◦ and 360◦ and show the main lobe at 180◦. The surrounding lobes
have a value of approximately −12 dB for 25.1 kHz and 54.4 kHz. At 17.1 kHz, the sidelobes have
values around −20 dB describing a higher probability of finding a sound source of that particular
frequency at 180◦.

45

90

135
0

−25

−50

−75

Quarter SRP (dB) at 23.7 kHz

45

90

135
0

−25

−50

−75

Quarter SRP (dB) at 36.2 kHz

45

90

135
0

−25

−50

−75

Quarter SRP (dB) at 48.1 kHz

Figure 16. Polar plots of the Quarter array at 23.7 kHz (Left), 36.2 kHz (Middle) and 48.1 kHz (Right).
These plots are bound between 45◦ and 135◦ and show the main lobe at 90◦. The other lobes have a
value of approximately −18 dB and confirm the results obtained from the metrics.

5.2. Acoustic Source Emitting from Multiple Positions

In Section 5.1 the results of the microphone arrays when subjected to a single monochromatic
sound source with increasing frequency from one position are demonstrated. However, sound sources
can be placed at any position around the microphone array. To estimate the response of the proposed
microphone arrays, a single acoustic source emitting monochromatic waves from different positions
around the microphone arrays is used. From here, the different metrics can be computed against each
emitting position. For each frequency, the minimum, maximum, average and the 75 percentiles (Q3
factor) of each metric are computed. To obtain these steered metrics, the response of the microphone
array is sampled with a limited number of emitting positions. The obtained minimum, maximum,
average and Q3 values of each steered metric are representative in case a sufficient number of equally
distributed positions over the area of interest. The steered metrics are computed for both arrays with
the different combination of subarrays enabled. For both arrays we compute the steered metrics
in a horizontal plane for the full 360◦. The computations are done at 32 evenly distributed angular
positions in the 360◦ horizontal plane at a radius of 5 m from the microphone array. At each position,
the acoustic source emits signals between 100 Hz up to 80 kHz with a frequency interval of 100 Hz.
The steered directivity plots for both arrays are shown in Figure 17.

Sensors 2019, 19, 3906 24 of 37

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

D
ir
ec
ti
v
it
y

UMAP subarray 1

Average directivity

75% distribution

Min/Max

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

D
ir
ec
ti
v
it
y

UMAP subarray 2

Average directivity

75% distribution

Min/Max

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

D
ir
ec
ti
v
it
y

UMAP all subarrays

Average directivity

75% distribution

Min/Max

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

D
ir
ec
ti
v
it
y

Quarter subarray 1

Average directivity

75% distribution

Min/Max

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

D
ir
ec
ti
v
it
y

Quarter subarray 2

Average directivity

75% distribution

Min/Max

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

D
ir
ec
ti
v
it
y

Quarter all subarrays

Average directivity

75% distribution

Min/Max

Figure 17. Directivity on multiple positions. The directivity of the UMAP array (Top) and the Quarter
array (Bottom) when the inner (Left), outer (Middle) and both (Right) subarrays are enabled.

The average directivity for both arrays increases while the number of microphones utilized
increases. The directivity increases for both arrays and for all combinations of subarrays up to a given
threshold frequency, beyond which a directivity decrease can be observed. A noticeable difference
between both arrays can be found in both the level of average directivity and the range between the
minimum and maximum directivity. The UMAP array generally offers a lower average directivity.
However, the range between the minimum and maximum directivity (and the Q3 factor) is much
lower compared to the results obtained from the Quarter array. The circular pattern of the UMAP
array allows to steer in all orientations with a lower difference in SRP values. The Quarter array has
specifically been designed to match the response of a quarter of an array resulting in a lower SRP
performance around 0◦ and 180◦.

The obtained beamwidth also varies depending on the shape of the microphone array. This is
shown in Figure 18. In the experiments, the size and amount of microphones do not necessarily induce
a smaller beamwidth. The average steered beamwidth of the Quarter array in all orientations is slightly
higher compared to the UMAP array. In case of the Quarter array, the descend rate of the beamwidth
at lower frequencies is more pronounced than for the UMAP array. However, even though the Quarter
contains more microphones in a bigger shape, the variability of the beamwidth shows that this array is
less suited for omnidirectional measurements compared to the UMAP array. At higher frequencies,
25 kHz and beyond, both arrays show a similar performance. This is especially the case when all
subarrays are utilized.

The PSLL metric allows to determine whether a given microphone array detects the AoA of a
sound source at the expected angle. For this metric the average, the minimum and maximum, and
the Q3 factor of the PSLL are computed. Positive PSLL values indicate that a higher peak at another
angle overwhelms the expected AoA. The steered PSLL values of both arrays are shown in Figure 19.
The UMAP array shows, as in Section 5.1, higher values for the average PSLL compared to the Quarter
array. However, a comparable study regarding the variability on the metric can be observed. In case of
the Quarter array, the minimum and maximum of this metric reaches 0 dB at very low frequencies. This
threshold is only reached at a frequency of approximately 16 kHz for the UMAP array when utilizing
all subarrays. The Q3 distribution however, reaches the 0 dB only at 28 and 36 kHz for respectively
the Quarter and UMAP array when all subarrays are enabled. The latter indicates that the AoA of an
acoustic source can be found in 75% of the cases up to these frequencies.

Sensors 2019, 19, 3906 25 of 37

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

B
ea
m
w
id
th

UMAP subarray 1

Average beamwidth

75% distribution

Min/Max

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

B
ea
m
w
id
th

UMAP subarray 2

Average beamwidth

75% distribution

Min/Max

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

B
ea
m
w
id
th

UMAP all subarrays

Average beamwidth

75% distribution

Min/Max

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

B
ea
m
w
id
th

Quarter subarray 1

Average beamwidth

75% distribution

Min/Max

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

B
ea
m
w
id
th

Quarter subarray 2

Average beamwidth

75% distribution

Min/Max

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

B
ea
m
w
id
th

Quarter all subarrays

Average beamwidth

75% distribution

Min/Max

Figure 18. Beamwidth on multiple positions. The beamwidth of the UMAP array (Top) and the Quarter
array (Bottom) are shown with the inner (Left), outer (Middle) and all subarrays (Right) enabled.

0 20 40 60 80

−30

−15

0

15

30

Frequency (kHz)

P
ea
k
si
d
e
lo
b
e
le
ve
l
(d
B
)

UMAP subarray 1

Average PSLL

75% distribution

Min/Max

0 20 40 60 80

−30

−15

0

15

30

Frequency (kHz)

P
ea
k
si
d
e
lo
b
e
le
ve
l
(d
B
)

UMAP subarray 2

Average PSLL

75% distribution

Min/Max

0 20 40 60 80

−30

−15

0

15

30

Frequency (kHz)

P
ea
k
si
d
e
lo
b
e
le
ve
l
(d
B
)

UMAP all subarrays

Average PSLL

75% distribution

Min/Max

0 20 40 60 80

−30

−15

0

15

30

Frequency (kHz)

P
ea
k
si
d
e
lo
b
e
le
ve
l
(d
B
)

Quarter subarray 1

Average PSLL

75% distribution

Min/Max

0 20 40 60 80

−30

−15

0

15

30

Frequency (kHz)

P
ea
k
si
d
e
lo
b
e
le
ve
l
(d
B
)

Quarter subarray 2

Average PSLL

75% distribution

Min/Max

0 20 40 60 80

−30

−15

0

15

30

Frequency (kHz)

P
ea
k
si
d
e
lo
b
e
le
ve
l
(d
B
)

Quarter all subarrays

Average PSLL

75% distribution

Min/Max

Figure 19. Peak side lobe level on multiple positions. The peak side lobe level of the UMAP array (Top)
and the Quarter array (Bottom) are shown with the inner (Left), outer (Middle) and all subarrays
(Right) enabled.

The last metric to be discussed here is the steered FI (Figure 20). Negative values of focal indices
indicate the main beam could not be found at the expected AoA of the acoustic source. Better average
results are again obtained with the Quarter array. Similarly to the other metrics, the variability on
this metric is more pronounced for the Quarter array, resulting in zero or slightly negative values at
lower frequencies. In case that all subarrays are enabled on the UMAP microphone array, negative
focal indices can be found beyond 16 kHz. However, the Q3 factor of the Quarter array reaches the
abscis at approximately 28 kHz. The UMAP reaches this point at approximately 38 kHz, indicating

Sensors 2019, 19, 3906 26 of 37

that in all steering orientations the array is capable of finding the supposed AoA of the acoustic source
in 75% of the cases.

0 20 40 60 80
−0.5

−0.25

0

0.25

0.5

0.75

1

Frequency (kHz)

F
o
ca
l
in
d
ex

UMAP subarray 1

Average focal index

75% distribution

Min/Max

0 20 40 60 80
−0.5

−0.25

0

0.25

0.5

0.75

1

Frequency (kHz)
F
o
ca
l
in
d
ex

UMAP subarray 2

Average focal index

75% distribution

Min/Max

0 20 40 60 80
−0.5

−0.25

0

0.25

0.5

0.75

1

Frequency (kHz)

F
o
ca
l
in
d
ex

UMAP all subarrays

Average focal index

75% distribution

Min/Max

0 20 40 60 80
−0.5

−0.25

0

0.25

0.5

0.75

1

Frequency (kHz)

F
o
ca
l
in
d
ex

Quarter subarray 1

Average focal index

75% distribution

Min/Max

0 20 40 60 80
−0.5

−0.25

0

0.25

0.5

0.75

1

Frequency (kHz)

F
o
ca
l
in
d
ex

Quarter subarray 2

Average focal index

75% distribution

Min/Max

0 20 40 60 80
−0.5

−0.25

0

0.25

0.5

0.75

1

Frequency (kHz)

F
o
ca
l
in
d
ex

Quarter all subarrays

Average focal index

75% distribution

Min/Max

Figure 20. FI on multiple positions of the UMAP array (Top) and the Quarter array (Bottom). Here,
the graph represents the results when subarray 1 (Left), subarray2 (Middle) and all subarrays (Right)
are enabled.

The Quarter array offers a result which is not optimized for locating an acoustic source in
360◦. Therefore, in the following experiment the steering vectors are bounded between 45◦ and 135◦.
The results are shown in Figure 21. The directivity of the Quarter array between 45◦ to 135◦ shows
a lower average value. The Q3 factor (and the minimum and maximum) shows a smaller deviation
around the average indicating that the array performs more consistently in this region of interest.
The beamwidth however generally increases with a factor of four compared to the previous emulated
steered beamwidth. This is due to a reduction of the area of interest by a factor 4. More importantly, the
average PSLL factor decreases whereas the Q3 factor of the PSLL crosses the Abscis at approximately
45 kHz. The minimum and maximum boundary however indicate that the array does not perform
better than when locating a sound source in all directions. The latter is reflected in the FI, where the
Q3 factor crosses the Abscis around 45 kHz, but the minimum and maximum observed values do not
allow to always detect a sound source unambiguously in the given area of interest.

Sensors 2019, 19, 3906 27 of 37

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

D
ir
ec
ti
v
it
y

Directivity

Average directivity

75% distribution

Min/Max

0 20 40 60 80
0

0.25

0.5

0.75

1

Frequency (kHz)

B
ea
m
w
id
th

Beamwidth

Average beamwidth

75% distribution

Min/Max

0 20 40 60 80

−30

−15

0

15

30

Frequency (kHz)

P
ea
k
si
d
e
lo
b
e
le
ve
l
(d
B
)

Peak side lobe level

Average PSLL

75% distribution

Min/Max

0 20 40 60 80
−0.5

−0.25

0

0.25

0.5

0.75

1

Frequency (kHz)

F
o
ca
l
in
d
ex

Focal index

Average focal index

75% distribution

Min/Max

Figure 21. Metrics on multiple positions of the Quarter array between 45◦ and 135◦. The directivity
(Top left), the beamwidth (Top right), the PSLL (Bottom left) and the FI (Bottom right) are shown.
The graphs represent the results of the Quarter array when all subarrays are enabled and the position
of the acoustic source varies between 45◦ to 135◦.

5.3. 3D Polar Plot

A similar plot as the polar plot in 2D can be obtained when steering in 3 dimensions. In this
experiment a 3D beamforming of both microphone arrays is obtained by utilizing the same delay
and sum beamforming and filtering approach as described in Section 5.1. The 3D plots are shown in
Figures 22 and 23 and describe a symmetrical polar plot around the XY-plane. This effect is due to
the planar configuration of both arrays. The main lobe for both arrays points to the direction of the
sound source.

Figure 22. Polar plot in 3 dimensions of the UMAP array (Left) and the Quarter array (Right). The plot
is obtained at a frequency of 17.1 kHz for the UMAP array and at 21.5 kHz for the Quarter array.
The AoA of the sound source is highlighted with the yellow line. The shape of the microphone array is
represented with red points in the graph.

Sensors 2019, 19, 3906 28 of 37

Figure 23. Polar plot in 3 dimensions of the UMAP array (Left) and the Quarter array (Right) with two
emulated sound sources located at [0,5 m,0] and at [0,−5 m,−5 m]. In case of the Quarter array, the
sound sources emit at a frequency of 8 kHz and 8.8 kHz. The UMAP array is pointing to sources with a
frequency of 8 and 6.2 kHz.

5.4. Beamforming Using Fixed Point Precision DSP

The emulations performed in Section 5.1 are obtained by using double precision arithmetic.
FPGAs and other low power embedded systems may compute the results using fixed point and or
integer arithmetics. The emulator also allows to estimate the error ξ ′(~u, S, z) between a given amount
of bits resolution and double precision. In the experiments the SRP of both arrays when all subarrays
are enabled is computed. In both cases, an acoustic source is placed at an angle of 90◦ relative to the
microphone arrays. The SRP in double precision format is computed as a reference. Thereafter the
same SRP with a limited number of bits in fixed point format is computed, where 18 bit coefficients for
the filters are used. The output bitwidth used in the experiments ranges from 28 up to 32 bits. Lower
bitwidths could not be used since these result in a zero SRP. Higher bitwidths result in a SRP which
nears the SRP in double precision format, and thus resulting in a lower ξ ′(~u, S, z) error. The SRP of
the UMAP array is computed at 17.1, 25.1 and 54.4 kHz, while the Quarter array is evaluated at 23.7,
36.2 and 48.1 kHz. The results are shown in Figure 24. The double precision SRP is represented by the
“Inf” legend. All SRPs are normalized to the maximum observed value. In all cases, a lower number of
output bits would result in a more flat SRP response. In case 28 output bits are used, the logarithmic
error 20 · log

(
ξ ′(~u, S, z)

)
attains almost 25 dB at some points of the SRP. When 30 bits are used, the SRP

matches more closely the expected SRP while at 32 bits the SRP differences with the double precision
output are almost not noticeable.

0

45

90

135

180

225

270

315

0−25−50−75

UMAP SRP (dB) at 17.1kHz
28 bits output
30 bits output
32 bits output
Inf output

0

45

90

135

180

225

270

315

0−25−50−75

UMAP SRP (dB) at 25.1 kHz
28 bits output
30 bits output
32 bits output
Inf output

0

45

90

135

180

225

270

315

0−25−50−75

UMAP SRP (dB) at 54.4 kHz
28 bits output
30 bits output
32 bits output
Inf output

45

90

135
0

−25

−50

−75

Quarter SRP (dB) at 23.7 kHz

28 bits output
30 bits output
32 bits output
Inf output

45

90

135
0

−25

−50

−75

Quarter SRP (dB) at 36.2 kHz

28 bits output
30 bits output
32 bits output
Inf output

45

90

135
0

−25

−50

−75

Quarter SRP (dB) at 48.1 kHz

28 bits output
30 bits output
32 bits output
Inf output

Figure 24. SRP error due to the output bitwidth of the the UMAP array (Top) and the Quarter array
(Bottom). The UMAP array is evaluated at frequencies 17.1, 25.1 and 54.4 kHz while the UMAP array
is evaluated at 23.7, 36.2 and 48.1 kHz. All results are normalized to the highest observed SRP value.

Sensors 2019, 19, 3906 29 of 37

5.5. Compute-Time of the Emulations

The emulations mentioned in the above paragraphs have been computed on 4 server machines.
Depending on the requested operations and the machines on which the operations are performed, the
computations take a given amount of time. The configurations of the machines are listed in Table 1.
The different requested operations with the time required to obtain the results are listed in Table 2.
The machine on which the operations have been computed is also listed. During the computations all
available cores in each machine are used.

Table 1. Machine on which the emulations are performed. The first machine is the only machine
completely dedicated for the emulations while the three other virtual machines are running in a
VMWare ESXi environment.

Machine Type Number of Cores CPU Model CPU Frequency (GHz) RAM (GB)

Virtual server 1 8 (16 hyper threaded) Intel Xeon R©E5530 CPU 2.4 12
Virtual server 2 8 Intel Xeon R©Gold 5118 CPU 2.3 16
Virtual server 3 8 Intel Xeon R©Gold 5118 CPU 2.3 16
Virtual server 4 4 Intel Xeon R©Gold 5118 CPU 2.3 16

Table 2. List of operations with the corresponding time required to complete each operation.
The machine on which the operation has been computed is listed in the second column.
The abbreviations “aessp” and “aesmp” respectively denote “acoustic emitting source single position”
and “acoustic emitting source multiple positions”.

Emulation Configuration Machine Completion Time (s)

UMAP subarray 1, aessp Virtual server 2/3 309
UMAP subarray 2, aessp Virtual server 1 602
UMAP all subarrays, aessp Virtual server 2/3 487

Quarter subarray 1, aessp Virtual server 2/3 396
Quarter subarray 2, aessp Virtual server 1 558
Quarter all subarrays, aessp Virtual server 2/3 549

UMAP subarray 1, aesmp Virtual server 1 25,089
UMAP subarray 2, aesmp Virtual server 4 22,241
UMAP all subarrays, aesmp Virtual server 2/3 19,152

Quarter subarray 1, aesmp (360◦) Virtual server 2/3 17,803
Quarter subarray 2, aesmp (360◦) Virtual server 4 29,659
Quarter all subarrays, aesmp (360◦) Virtual server 2/3 24,838

Quarter subarray 1, aesmp (90◦) Virtual server 2/3 13,744
Quarter subarray 2, aesmp (90◦) Virtual server 2/3 14,103
Quarter all subarrays, aesmp (90◦) Virtual server 1 28,638

6. Validation of the Emulation Platform

The last part of the experiments consists of validating the emulation platform by computing
beamforming results of acoustic captured samples. To mimic a acoustic reverberation free and open
field environment, measurements are performed in the anechoic boxes built by Carvalho et al. [59].
These boxes offer enough space to fit a complete test setup which consists of a microphone array, a
speaker and an FPGA attached to both the speaker and the microphone array. The complete setup in
the anechoic box is depicted in Figure 25. To evaluate the response of the array on acoustic sources
emitting from different angles, a ruler with a fixed length of 60 cm with the possibility of mounting the
array and the speaker with angular intervals of 2.81◦ is lasercut. The distance of 60 cm allows to fit the
complete setup in the anechoic box and to perform measurements which can be considered far-field.
In the experiments a 250ST180 piezo electric transducer with a resonance frequency of 25.5 kHz [60] is
used. Although this emitter offers a limited acoustic bandwidth of approximately 2 kHz, we noticed in

Sensors 2019, 19, 3906 30 of 37

the previous section that the optimum capturing frequency range of both arrays is situated around
this resonance frequency. The FPGA allows to send acoustic monochromatic waves with a known
frequency while receiving the PDM signals from the microphones at the same time. The FPGA board
is a Zynq based platform manufactured by MYIRtech [61]. This board comes with a Zynq7020 FPGA
running at 100 MHz and offers 3 Peripheral Module interface (PMOD) connectors through the IO-cape
board [62] allowing easy connection with the Quarter and UMAP microphone array boards. The FPGA
design which captures and generates the acoustic waves is shown in Figure 26. Capturing the PDM
samples from the microphones is done in 3 steps.

1. At first, a clock signal is generated to drive the microphones. The clock the microphones is set at
the highest possible clock speed of 4.761 MHz possible (i.e., with a clock divider ratio of 21).

2. Secondly, the PDM signals are captured from the microphones. Two microphones share the same
PDM multiplexed data line. To retrieve the individual signal from each microphone, this signal
is demultiplexed in the FPGA in a ‘left’ and ‘right’ channel by the PDM splitter modules.

3. During the last step, the PDM values are stored in a cyclic buffer before being transferred to a
computer for later processing. This latter is done via a Universal Asynchronous Receive Transmit
(UART) link between the FPGA and a computer.

Figure 25. Setup of the microphone arrays in the anechoic box, with the UMAP array (Left) and the
Quarter array (Right). Both arrays are mounted onto a ruler. At the other end of the ruler a piezoelectric
transmitter emits acoustic waves at a distance of 60 cm of the microphone arrays. The FPGA is the
device at the front right in the box with a UART connection with a computer.

Control Logic

Cyclic Buffer Serializer

UART

PDM Splitter 1

PDM Splitter 2

PDM Splitter n

P
D

M
b

u
ff

er

Monochromatic
Wave Generator

Acoustic EN
Acoustic
Output

PDM in 1

CLK PDM

PDM in 2

CLK PDM

PDM in n

CLK PDM

L

R

L

R

L

R

WR EN

CLK PDM

CLK PDM
Data RX

Data TX

Transmit EN

Transmit Ready

Address

Data

W EN

Data

TX

RX

Figure 26. FPGA logic of the measurement setup. The link between the computer and the FPGA is
done via the UART connection (TX and RX). When the control logic receives the command to start
capturing samples, the monochromatic wave generator emits an acoustic wave with the appropriate
frequency. The microphones send data to the FPGA via the PDM signals, which are splitted in left (‘L’)
and right (‘R’) channels. The PDM buffer allows to synchronize the left and right channels before the
samples are stored into the cyclic buffer. After capturing, the serializer transfers the samples as data of
1 byte via the UART to the computer. The PDM_CLK runs at 4.761 MHz.

Sensors 2019, 19, 3906 31 of 37

A state machine ensures the proper sampling of the microphones and to transfer the samples in
the appropriate order to the computer.

We perform a microphone calibration routine so that the individual Tdelay (see Section 2.4) of
each of the microphones can be obtained. This calibration setup consists of a transmitter emitting an
ultrasound wideband signal which is captured by the individual microphones in the array. The signals
of the microphones are correlated with a reference microphone arbitrarily chosen in the array. Each
Tdelay is obtained by comparing the expected time of the correlation peak with the obtained time of the
correlation peak. The lowest Tdelay is subtracted from all Tdelay so that positive time delays are used
in the delaying buffers. These time delays are taken into account during the processing of the PDM
signals in the emulator.

6.1. Validation of the Emulated Microphone Arrays

6.1.1. UMAP Array

The UMAP array is evaluated at 17.1, 25.1 and 27 kHz. All evaluations are performed using the
filter + D&S architecture with a sampling frequency set at 4.761 MHz. During the capturing process,
250 k samples of each microphone (i.e., approximately 50 ms) are processed. The measured data is
compared with emulated data and the results are shown in Figure 27. Although the resulting SRP
values are not identical, a high degree of similarity can be noticed. This is especially the case for the
major lobes, including the main lobe with a similar dB-level.

0

45

90

135

180

225

270

315

0−25−50−75

Captured samples UMAP array (17.1 kHz) at 0◦

0

45

90

135

180

225

270

315

0−25−50−75

Captured samples UMAP array (25.1 kHz) at 0◦

0

45

90

135

180

225

270

315

0−25−50−75

Captured samples UMAP array (27 kHz) at 0◦

0

45

90

135

180

225

270

315

0−25−50−75

Emulated samples UMAP array (17.1 kHz) at 0◦

0

45

90

135

180

225

270

315

0−25−50−75

Emulated samples UMAP array (25.1 kHz) at 0◦

0

45

90

135

180

225

270

315

0−25−50−75

Emulated samples UMAP array (27 kHz) at 0◦

Figure 27. Evaluation of the SRP results of the UMAP array with captured data (Top row) and from an
emulated sound source (Bottom row) at 17.1, 25.1 and 27 kHz. In all cases, the sound source is located
at a distance of 60 cm and at 0◦ from the microphone array.

6.1.2. Quarter Array

In case of the Quarter array, the array is evaluated at 20, 23.7 and 36.2 kHz. Evaluating the array
at a frequency of 48.1 kHz would cause possible false comparisons since this frequency is well beyond
the specifications of the emitting transducer. All evaluations are performed using the filter + D&S
architecture with a sampling frequency set at 4.761 MHz. During the capturing process, 200 k samples
instead of 250 k samples of each microphone are taken into account. This limitation of the number
of samples is due to the available amount of blockram in the FPGA and the increased number of

Sensors 2019, 19, 3906 32 of 37

microphones. This corresponds to approximately to 40 ms of samples. The measured data is compared
with emulated data and the results are shown in Figure 28. Also here, the resulting SRP values are not
identical but a high degree of similarity can be noticed. This is especially the case for the major lobes,
including the main lobe with a similar dB-level.

0

45

90

135

180

225

270

315

0−25−50−75

Captured samples Quarter array (20 kHz) at 90◦

0

45

90

135

180

225

270

315

0−25−50−75

Captured samples Quarter array (23.7 kHz) at 90◦

0

45

90

135

180

225

270

315

0−25−50−75

Captured samples Quarter array (36.2 kHz) at 90◦

0

45

90

135

180

225

270

315

0−25−50−75

Emulated samples Quarter array (20 kHz) at 90◦

0

45

90

135

180

225

270

315

0−25−50−75

Emulated samples Quarter array (23.7 kHz) at 90◦

0

45

90

135

180

225

270

315

0−25−50−75

Emulated samples Quarter array (36.2 kHz) at 90◦

Figure 28. Evaluation of the SRP results of the Quarter array with captured data (Top row) and from
emulated sound source (Bottom row) at 20, 23.7 and 36.2 kHz. In all cases, the sound source is located
at a distance of 60 cm and at 90◦ from the microphone array.

6.2. Compute-Time

The time required to process a file and a full emulation is also listed here. The same servers as in
the previous Section are used during this process. The compute-times of the different emulations and
file processing requests are listed in Table 3. Note that during these computations only one core of each
machine is used. In all cases a time frame of 40 ms for both the captured samples and the emulated
sound sources is taken into account during the processing. The compute-time with a captured data
is generally shorter than the time required to compute with emulated sound sources. This is due to
skipping the steps of emulating the sound sources and to capture within the microphones themselves.
This time reduction corresponds to approximately 50% of the required time in case the same server
would be used for captured data as for the emulated sound sources.

Table 3. List of operations with the corresponding time required to complete each operation.
The machine on which the operation has been computed is listed between brackets next to the
compute-time.

Emulation Configuration Completion Time Capturing (s) Completion Time Simulation (s)

UMAP 17.1 kHz 4 (Virtual server 2/3) 11 (Virtual server 1)
UMAP 25.1 kHz 6 (Virtual server 1) 8 (Virtual server 2/3)
UMAP 27 kHz 4 (Virtual server 2/3) 8 (Virtual server 4)

Quarter 20 kHz 4 (Virtual server 2/3) 15 (Virtual server 1)
Quarter 23.7 kHz 4 (Virtual server 4) 12 (Virtual server 2/3)
Quarter 36.2 kHz 5 (Virtual server 2/3) 12 (Virtual server 4)

Sensors 2019, 19, 3906 33 of 37

6.3. Defining a Microphone Array

The UMAP and the Quarter array show comparable results for both the emulated sound sources
and the captured acoustic data. A set of metrics have been defined in Section 3 describing the ability of
an implemented algorithm to find the AoA of a sound source on a given microphone array. Although
a single metric describing the performance of microphone array would be ideal, the set of metrics
allow to define the boundary conditions of the beamwidth, the PSLL, the directivity and the FI to the
given application of use. The effects of the boundaries on finding a sound source is listed below.

• The beamwidth: a thinner beamwidth allows to find a sound source in a smaller angular region.
However, a thinner beamwidth also requires more microphones and thus also more processing
capabilities.

• The Directivity: A higher directivity allows to predict with a higher probability the AoA of a
sound source for a given microphone array.

• The PSLL: in order to be able to find a sound source in a given AoA, a negative PSLL must be
obtained. More microphones and processing capabilities are required to obtain lower and thus
more optimal PSLL values.

• The FI: this metric is related to the beamwidth and the PSLL. A positive value of the FI is to be
obtained so that a sound source can be found, where a value of 1 is preferred at the expense of
more microphones and processing capabilities.

The metrics can be used in case that a sound source is to be found in only one given AoA.
The steered metrics allow to define the angular range in which the microphone array is expected to
operate. The variation of the Q3 factor and the minimum and maximum values of a given metric
ideally have to be zero in case the probability of finding a sound source in all desired AoA is expected
to be equal. The latter combined with optimal boundaries have to be weighed up against the number
of microphones, the desired beamforming algorithm and the placement of the microphones. It is
also possible to weigh up the metrics against each other with a given number of microphones. More
important metric can be optimized at the expense of other metrics while keeping the same number of
microphones and beamforming algorithm.

7. Conclusions

In this paper the CABE platform which allows to assess the performance of a user defined
microphone array design along with the selected signal processing chain is proposed. The emulator
is built on the D&S beamforming principle where the order of signal processing operations can be
changed. The effects of non-idealities of the microphones and the effects of several signal processing
chains affect the results and thus the probability of finding a sound source. The effects of fixed
point computation compared to results obtained with double precision arithmetic are also outlined.
The platform is capable of taking advantage of multicore environments and it is also possible to
deploy the back-end beamforming emulator on multiple machines so that concurrent emulation
requests can be computed simultaneously. The compute-time and the machine properties on which
the computations are performed are logged and shown to the user via the CABE client application.
The different far-field steering methods enable to compute beamforming algorithms in both 2D and
3D. The CABE client application allows to issue new requests and to visualize the results using several
display modes. An HDL package generator is also included so that development towards FPGA
implementations is facilitated. More importantly, the emulator platform also allows to process samples
captured from a microphone array and to generate the appropriate results. With this last possibility
one can compare results from emulated sound sources with the results from captured samples. At last,
assessing the performance of a given microphone array with the chosen signal processing techniques
is facilitated with the use of the metrics. These metrics depict the effectiveness of locating an acoustic
sound source with a given frequency. The steered metrics allow to assess the performance of an array in
all the angles of interest, where the minimum and maximum computed steered response power results

Sensors 2019, 19, 3906 34 of 37

along with the average and 75 percentiles are computed. The beamforming emulator is currently used
in our Reconfigurable Architectures, Parallel Processing & Telecommunications Oriented Research
(RAPPTOR) team and additional possibilities are added on a regular basis. The platform can be
accessed at https://projects.rapptor.vub.ac.be/CABE/. The current platform allows to emulate
microphone arrays with acoustic waves of different frequencies in an open field without reverberations.
Adding acoustic reverberation techniques would help to mimic a real environment and to evaluate the
response of given microphone array. Obtaining some results requires a computation time of several
hours. This could lead to a long waiting time in case a lot of emulations are requested. Adding support
for Graphics Processing Unit (GPU) and or FPGA support in the emulator would drastically reduce
the compute-time. Updates will be added to this website, where the client and the visualization tools
can be downloaded as well.

Author Contributions: Conceptualization, L.S.; Data curation, L.S.; Formal analysis, L.S. and J.V.; Funding
acquisition, A.T.; Investigation, L.S. and B.J.L.; Methodology, L.S., T.V., B.d.S. and A.T.; Project administration, A.B.
and A.T.; Software, L.S., J.V. and T.V.; Validation, L.S. and B.J.L.; Visualization, J.V.; Writing—original draft, L.S.
and A.T.; Writing—review & editing, L.S., J.V., T.V., B.J.L., B.d.S. and A.B.

Funding: This work was supported by the European Regional Development Fund (ERDF) and the Brussels-Capital
Region-Innoviris within the framework of the Operational Programme 20142020 through the ERDF-2020 Project
ICITYRDI.BRU.

Acknowledgments: We would like to thank the ICT administrator of ETRO (VUB) Luc van Kempen for the
donation of computers on which we ran the emulations computed during the research. Luc also provided us with
internal IP addresses for the computers and servers. We also would like to thank Maxime Frooninckx from our
secretary who ordered and made sure all components and boards for this research were ordered quickly.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Segers, L.; Van Bavegem, D.; De Winne, S.; Braeken, A.; Touhafi, A.; Steenhaut, K. An Ultrasonic
Multiple-Access Ranging Core Based on Frequency Shift Keying Towards Indoor Localization. Sensors
2015, 15, 18641–18665.

2. Segers, L.; Tiete, J.; Braeken, A.; Touhafi, A. Ultrasonic Multiple-Access Ranging System Using Spread
Spectrum and MEMS Technology for Indoor Localization. Sensors 2014, 14, 3172–3187.

3. Tiete, J.; Dominguez, F.; Silva, B.D.; Segers, L.; Steenhaut, K.; Touhafi, A. SoundCompass: A Distributed
MEMS Microphone Array-Based Sensor for Sound Source Localization. Sensors 2014, 14, 1918–1949.

4. Steckel, J. Sonar System Combining an Emitter Array With a Sparse Receiver Array for Air-Coupled
Applications. IEEE Sens. 2015, 15, 3446–3452, doi:10.1109/JSEN.2015.2391290.

5. Brandstein, M.S.; Silverman, H.F. A practical methodology for speech source localization with microphone
arrays. Comput. Speech Lang. 1997, 11, 91–126.

6. Hadad, E.; Marquardt, D.; Pu, W.; Gannot, S.; Doclo, S.; Luo, Z.; Merks, L.; Zhang, T. Comparison of two
binaural beamforming approaches for hearing aids. In Proceedings of the 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017, pp. 236–240.

7. Steckel, J.; Boen, A.; Peremans, H. Broadband 3-D Sonar System Using a Sparse Array for Indoor Navigation.
IEEE Trans. Rob. 2013, 29, 161–171, doi: 10.1109/TRO.2012.2221313.

8. da Silva, B.; Segers, L.; Braeken, A.; Steenhaut, K.; Touhafi, A. A Low-Power FPGA-Based Architecture for
Microphone Arrays in Wireless Sensor Networks. In Proceedings of the International Symposium on Applied
Reconfigurable Computing, Santorini, Greece, 2–4 May 2018.

9. da Silva, B.; Braeken, A.; Steenhaut, K.; Touhafi, A. Design Considerations When Accelerating an FPGA-Based
Digital Microphone Array for Sound-Source Localization. J. Sens. 2017, 2017, 6782176.

10. da Silva, B.; Segers, L.; Segers, Y.; Quevy, Q.; Braeken, A.; Touhafi, A. A Multimode SoC FPGA-Based
Acoustic Camera for Wireless Sensor Networks. In Proceedings of the 2018 13th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Lille, France, 9–11 July 2018.

11. MathWorks. Phased Array System Toolbox. Available online: https://nl.mathworks.com/products/phased-
array.html (accessed on 5 June 2018).

https://projects.rapptor.vub.ac.be/CABE/
https://nl.mathworks.com/products/phased-array.html
https://nl.mathworks.com/products/phased-array.html

Sensors 2019, 19, 3906 35 of 37

12. Sun, Y.; Chen, J.; Yuen, C.; Rahardja, S. Indoor Sound Source Localization with Probabilistic Neural Network.
IEEE Trans. Ind. Electron. 2017, 65, 6403–6413.

13. Sheaffer, J.; Fazenda, B.M. WaveCloud: An Open Source Room Acoustics Simulator Using the Finite Difference
Time Domain Method. Available online: http://usir.salford.ac.uk/id/eprint/32804/ (accessed on 15 May
2018).

14. Jonathan Sheaffer. WaveCloud-M: Acoustics FDTD Simulator for Matlab. Available online: http://www.ee.
bgu.ac.il/~sheaffer/wavecloud.html (accessed on 15 May 2018).

15. SimScale. Home Page. Available online: https://www.simscale.com/ (accessed on 17 May 2018).
16. KUAVA. Waveler Cloud. Available online: http://www.kuava.fi/software-solutions/waveller-audio-and-

noise-simulation-system/wavecloud.html (accessed on 17 May 2018).
17. Segers, L.; da Silva, B.; Braeken, A.; Touhafi, A. Cloud-Based Acoustic Beamforming Emulator for FPGA-Based

Sound Source Localization. In Proceedings of the 4th International Conference on Cloud Computing
Technologies and Applications (Cloudtech), Brussels, Belgium, 26–28 November 2018.

18. Taghizadeh, M.; Garner, P.; Bourlard, H. Microphone Array Beampattern Characterization for Hands-Free
Speech Applications. In Proceedings of the IEEE 7th Sensor Array and Multichannel Signal Processing
Workshop, Hoboken, NJ, USA, 17–20 June 2012; pp. 465–468.

19. Tashev, I.; Malvar, H.S. A new beamformer design algorithm for microphone arrays. In Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing, Brighton, UK, 12–17 May 2005.

20. Herbordt, W.; Kellermann, W. Computationally efficient frequency-domain robust generalized sidelobe
canceller. In Proceedings of the 2005 International Workshop on Acoustic Echo and Noise Control, Eindhoven,
The Netherlands, 12–15 September 2005.

21. Lepauloux, L.; Scalart, P.; Marro, C. Computationally efficient and robust frequency-domain GSC. In
Proceedings of the 12th IEEE International Workshop on Acoustic Echo and Noise Control, Tel-Aviv, Israel, 31
August 2010.

22. Rombouts, G.; Spriet, A.; Moonen, M. Generalized sidelobe canceller based combined acoustic feedback-and
noise cancellation. Signal Process. 2008, 88, 571–581.

23. Gao, S.; Huang, Y.; Zhang, T.; Wu, X.; Qu, T. A Modified Frequency Weighted MUSIC Algorithm for Multiple
Sound Sources Localization. In Proceedings of the 23rd International Conference on Digital Signal Processing
(DSP 2018), Shanghai, China, 19–21 November 2018.

24. Birnie, L.; Abhayapala, T.D.; Chen, H.; Samarasinghe, P.N. Sound Source Localization in a Reverberant Room
Using Harmonic Based Music. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing, Brighton, UK, 12–17 May 2019.

25. Jo, B.; Choi, J.W. Direction of arrival estimation using nonsingular spherical ESPRIT. J. Acoust. Soc. Am. 2018,
143, EL181–EL187.

26. Chen, T.; Huang, Q.; Zhang, L.; Fang, Y. Direction of Arrival Estimation Using Distributed Circular
Microphone Arrays. In Proceedings of the 14th IEEE International Conference on Signal Processing (ICSP),
Beijing, China, 12–16 August 2018.

27. Zohourian, M.; Martin, R. GSC-Based Binaural Speaker Separation Preserving Spatial Cues. In Proceedings of
the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018.

28. Holm, S. Digital Beamforming in Ultrasound Imaging. Available online: https://www.duo.uio.no/handle/
10852/9585 (accessed on 13 March 2019).

29. Havránek, Z.; Beneš, P.; Klusáček, S. Free-field calibration of MEMS microphone array used for acoustic
holography. In Proceedings of the 21st International Congress on Sound and Vibration, Beijing, China, 13 July
2014.

30. Sant, L.; Gaggl, R.; Bach, E.; Buffa, C.; Sträussnigg, D.; Wiesbauer, A. MEMS Microphones: Concept and
Design for Mobile Applications. In Low-Power Analog Techniques, Sensors for Mobile Devices, and Energy Efficient
Amplifiers, Springer: Cham, Switzerland, 2019, pp. 155–174.

31. Hegde, N. Seamlessly Interfacing MEMs Microphones with Blackfin Processors. EE-350 Engineer-to-Engineer
Note. Available online: https://www.analog.com/media/en/technical-documentation/application-notes/
EE-350rev1.pdf (accessed on 15 January 2018).

http://usir.salford.ac.uk/id/eprint/32804/
http://www.ee.bgu.ac.il/~sheaffer/wavecloud.html
http://www.ee.bgu.ac.il/~sheaffer/wavecloud.html
https://www.simscale.com/
http://www.kuava.fi/software-solutions/waveller-audio-and-noise- simulation-system/wavecloud.html
http://www.kuava.fi/software-solutions/waveller-audio-and-noise- simulation-system/wavecloud.html
https://www.duo.uio.no/handle/10852/9585
https://www.duo.uio.no/handle/10852/9585
https://www.analog.com/media/en/technical-documentation/application-notes/EE-350rev1.pdf
https://www.analog.com/media/en/technical-documentation/application-notes/EE-350rev1.pdf

Sensors 2019, 19, 3906 36 of 37

32. Loibl, M.; Walser, S.; Klugbauer, J.; Feiertag, G.; Siegel, C. Measurement of digital MEMS microphones.
In GMA/ITG-Fachtagung Sensoren und Messsysteme 2016; Available online: https://www.ama-science.org/
proceedings/details/2362 (accessed on 21 June 2018).

33. Knowles. Frequency Response and Latency of MEMS Microphones: Theory and Practice. Available
online: https://www.knowles.com/docs/default-source/default-document-library/frequency-response-
and-latency-of-mems-microphones---theory-and-practice.pdf?sfvrsn=4 (accessed on 16 January 2018).

34. Jarman, D. A Brief Introduction to Sigma Delta Conversion. Available online: https://www.renesas.com/eu/
en/www/doc/application-note/an9504.pdf (accessed on 18 January 2018).

35. Kester, W. ADC Architectures III: Sigma–Delta ADC Basics. Available online: https://www.analog.com/
media/en/training-seminars/tutorials/MT-022.pdf (accessed on 17 January 2018).

36. Janssen, E.; van Roermund, A. Basics of Sigma-Delta Modulation. In Look-Ahead Based Sigma-Delta Modulation.
Analog Circuits and Signal Processing; Springer: Dordrecht, The Netherlands, 2011; pp. 5–28.

37. Kelly, M.R.; Amuso, V.J.; Eddins, D.A.; Borkholder, D.A. The focal index as a singular metric for beamforming
effectiveness. J. Acous. Soc. Am. 2014, 136, 2654–2664.

38. Sun, H.; Yan, S.; Svensson, U.P. Robust minimum sidelobe beamforming for spherical microphone arrays.
IEEE Trans. Audio Speech Lang. Process. 2011, 19, 1045–1051.

39. Caorsi, S., Lommi, A., Massa, A., Pastorino, M. (2004). Peak sidelobe level reduction with a hybrid approach
based on GAs and difference sets. IEEE Trans. Antennas Propag. 2004, 52, 1116–1121.

40. YAML. YAML Ain’t Markup Language. Available online: https://yaml.org (accessed on 1 October 2018).
41. Ammar, A.; Julboub, M.; Elmghairbi, A. Digital Filter Design (FIR) Using Frequency Sampling Method.

Available online: http://bulletin.zu.edu.ly/issue_n15_3/Contents/E_04.pdf (accessed on 19 December 2018).
42. Knowles. Digital Zero-Height SiSonic Microphone with Multi-Mode and Ultrasonic Support. Available

online: https://www.mouser.be/datasheet/2/218/-746191.pdf (accessed on 3 October 2017).
43. Analog Devices. Ultralow Noise Microphone withBottom Port and PDM Digital Output. Available

online: http://www.analog.com/media/en/technical-documentation/obsolete-data-sheets/ADMP521.pdf
(accessed on 8 December 2016).

44. Richard Schreier. Delta Sigma Toolbox. Available online: https://nl.mathworks.com/matlabcentral/
fileexchange/19-delta-sigma-toolbox (accessed on 9 May 2018).

45. Yazkurt, U.; Dundar, G.; Talay, S.; Beilleau, N.; Aboushady, H.; de Lamarre, L. Scaling Input Signal Swings of
Overloaded Integrators in Resonator-based Sigma-Delta Modulators. In Proceedigns of the 2006 13th IEEE
International Conference on Electronics, Circuits and Systems, Nice, France, 10–13 December 2006.

46. Gonzalez, A. Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices. Math. Geosci.
2010, 42, 49–64.

47. da Silva, B.; Braeken, A.; Touhafi, A. FPGA-Based Architectures for Acoustic Beamforming with Microphone
Arrays: Trends, Challenges and Research Opportunities. Computers 2018, 7, 41.

48. Abdeen, A.; Ray, L. Design and performance of a real-time acoustic beamforming system. In Proceedings of
the 2013 IEEE Sensors, Baltimore, MD, USA, 3–6 November 2013.

49. Netti, A., Diodati, G., Camastra, F., Quaranta, V. FPGA implementation of a real-time filter and sum
beamformer for acoustic antenna. In Proceedings of the INTER-NOISE and NOISE-CON Congress and
Conference Proceedings, San Francisco, CA, USA, 9–12 August 2015.

50. Zimmermann, B.; Studer, C. FPGA-based real-time acoustic camera prototype. In Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010.

51. Hogenauer, E. An economical class of digital filters for decimation and interpolation. IEEE Trans. Acoust.
Speech Signal Process. 1981, 29, 155–162.

52. Hafizovic, I.; Nilsen; C.I.C.; Kjolerbakken, M.; Jahr, V. Design and implementation of a MEMS microphone
array system for real-time speech acquisition. Appl. Acoust. 2012, 73, 132–143.

53. Zwyssig, E.; Lincoln, M.; Renals, S. A digital microphone array for distant speech recognition. In Proceedings
of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 14–19
March 2010.

54. Perrodin, F.; Nikolic, J.; Busset, J.; Siegwart, R. Design and calibration of large microphone arrays for robotic
applications. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vilamoura, Portugal, 7–12 October 2012; pp. 4596–4601.

https://www.ama-science.org/proceedings/details/2362
https://www.ama-science.org/proceedings/details/2362
https://www.knowles.com/docs/default-source/default-document-library/frequency-response-and-latency-of-mems-microphones---theory-and-practice.pdf?sfvrsn=4
https://www.knowles.com/docs/default-source/default-document-library/frequency-response-and-latency-of-mems-microphones---theory-and-practice.pdf?sfvrsn=4
https://www.renesas.com/eu/en/www/doc/application-note/an9504.pdf
https://www.renesas.com/eu/en/www/doc/application-note/an9504.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-022.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-022.pdf
https://yaml.org
http://bulletin.zu.edu.ly/issue_n15_3/Contents/E_04.pdf
https://www.mouser.be/datasheet/2/218/-746191.pdf
http://www.analog.com/media/en/technical-documentation/obsolete-data-sheets/ADMP521.pdf
https://nl.mathworks.com/matlabcentral/fileexchange/19- delta-sigma-toolbox
https://nl.mathworks.com/matlabcentral/fileexchange/19- delta-sigma-toolbox

Sensors 2019, 19, 3906 37 of 37

55. da Silva, B.; Segers, L.; Braeken, A.; Touhafi, A. Design Exploration and Performance Strategies Towards
Power-Efficient FPGA-based Architectures for Sound Source Localization. J. Sens. 2019, 2019.

56. Xilinx. Zynq-7000 SoC. Available online: https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.
html (accessed on 10 July 2018).

57. OpenGL. Home Page. Available online: https://www.opengl.org/ (accessed on 13 February 2019).
58. Geuzaine, C. GL2PS: An OpenGL to PostScript printing library. Available online: http://geuz.org/gl2ps

(accessed on 12 February 2019).
59. Carvalho, F.R.; Tiete, J.; Touhafi, A.; Steenhaut, K. ABox: New method for evaluating wireless acoustic-sensor

networks. Appl. Acoust. 2014, 79, 81–91.
60. Air Ultrasonic Ceramic Transducers. 250ST/R160. Available online: http://www.farnell.com/datasheets/

1914801.pdf (accessed on 13 September 2016).
61. Make Your Idea Real. Home Page. Available online: http://www.myirtech.com/ (accessed on 12 July 2018).
62. Make Your Idea Real. Z-turn Board. Available online: http://www.myirtech.com/list.asp?id=502 (accessed

on 12 July 2018).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.opengl.org/
http://geuz.org/gl2ps
http://www.farnell.com/datasheets/1914801.pdf
http://www.farnell.com/datasheets/1914801.pdf
http://www.myirtech.com/
http://www.myirtech.com/list.asp?id=502
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Acoustic Beamforming
	Delay and Sum Beamforming
	Delay and Sum Beamforming with Non-Ideal Microphones
	Computing the Steered Response Power
	Acoustic Beamforming on FPGA–Discrete Sampling

	Performance Metrics
	Beamwidth (BW)
	Peak Side Lobe Level (PSLL)
	Integrated Side Lobe Level (ISLL)
	Focal Index (FI)
	Directivity Index (DI)
	Steered Metrics

	CABE: Cloud-Based Acoustic Beamforming Emulator
	Architectural Overview
	Emulator
	Processing Input Parameters (Step 1)
	Microphone Array Response Computation (Step 2)
	Acoustic Capturing
	Delay-and-Sum
	Steering Vectors
	Delay-and-Sum between Subarrays
	Signal Demodulation and Frequency Shaping Function
	SRP
	Commutative Computations

	Response Results Output (Step 3)
	Metrics Generator (Step 4)
	HDL Package Generator (Step 5)
	User Web Interface Database and Task Manager
	CABE Client

	Demonstration of the CABE Platform
	Frequency Response from a Single Acoustic Emitting Position
	Acoustic Source Emitting from Multiple Positions
	3D Polar Plot
	Beamforming Using Fixed Point Precision DSP
	Compute-Time of the Emulations

	Validation of the Emulation Platform
	Validation of the Emulated Microphone Arrays
	UMAP Array
	Quarter Array

	Compute-Time
	Defining a Microphone Array

	Conclusions
	References

