12 research outputs found

    Diurnal, seasonal, and annual trends in atmospheric CO<sub>2</sub> at southwest London during 2000-2012:Wind sector analysis and comparison with Mace Head, Ireland

    Get PDF
    In-situ measurements of atmospheric CO have been made at Royal Holloway University of London (RHUL) in Egham (EGH), Surrey, UK from 2000 to 2012. The data were linked to the global scale using NOAA-calibrated gases. Measured CO varies on time scales that range from minutes to inter-annual and annual cycles. Seasonality and pollution episodes occur each year. Diurnal cycles vary with daylight and temperature, which influence the biological cycle of CO and the degree of vertical mixing. Anthropogenic emissions of CO dominate the variability during weekdays when transport cycles are greater than at weekends. Seasonal cycles are driven by temporal variations in biological activity and changes in combustion emissions. Maximum mole fractions (μmol/mol) (henceforth referred to by parts per million, ppm) occur in winter, with minima in late summer. The smallest seasonal amplitude observed, peak to trough, was 17.0ppm CO in 2003, whereas the largest amplitude observed was 27.1ppm CO in 2008.Meteorology can strongly modify the CO mole fractions at different time scales. Analysis of eight 45° wind sectors shows that the highest CO mole fractions were recorded from the E and SE sectors. Lowest mole fractions were observed for air masses from the S and SW. Back-trajectory and meteorological analyses of the data confirm that the dominant sources of CO are anthropogenic emissions from London and SE England. The largest annual rate of increase in the annual average of CO, 3.26ppmyr (

    Stable isotopic signatures of methane from waste sources through atmospheric measurements

    Get PDF
    This study aimed to characterize the carbon isotopic signatures (δ13C-CH4) of several methane waste sources, predominantly in the UK, and during field campaigns in the Netherlands and Turkey. CH4 plumes emitted from waste sources were detected during mobile surveys using a cavity ring-down spectroscopy (CRDS) analyser. Air samples were collected in the plumes for subsequent isotope analysis by gas chromatography isotope ratio mass spectrometry (GC-IRMS) to characterize δ13C-CH4. The isotopic signatures were determined through a Keeling plot approach and the bivariate correlated errors and intrinsic scatter (BCES) fitting method. The δ13C-CH4 and δ2H-CH4 signatures were identified from biogas plants (−54.6 ± 5.6‰, n = 34; −314.4 ± 23‰ n = 3), landfills (−56.8 ± 2.3‰, n = 43; −268.2 ± 2.1‰, n = 2), sewage treatment plants (−51.6 ± 2.2‰, n = 15; −303.9 ± 22‰, n = 6), composting facilities (−54.7 ± 3.9‰, n = 6), a landfill leachate treatment plant (−57.1 ± 1.8‰, n = 2), one water treatment plant (−53.7 ± 0.1‰) and a waste recycling facility (−53.2 ± 0.2‰). The overall signature of 71 waste sources ranged from −64.4 to −44.3‰, with an average of −55.1 ± 4.1‰ (n = 102) for δ13C, −341 to −267‰, with an average of −300.3 ± 25‰ (n = 11) for δ2H, which can be distinguished from other source types in the UK such as gas leaks and ruminants. The study also demonstrates that δ2H-CH4 signatures, in addition to δ13C-CH4, can aid in better waste source apportionment and increase the granularity of isotope data required to improve regional modelling

    Environmental baseline monitoring for shale gas development in the UK: identification and geochemical characterisation of local source emissions of methane to atmosphere

    Get PDF
    Baseline mobile surveys of methane sources using vehicle-mounted instruments have been performed in the Fylde and Ryedale regions of Northern England over the 2016–19 period around proposed unconventional (shale) gas extraction sites. The aim was to identify and characterise methane sources ahead of hydraulically fractured shale gas extraction in the area around drilling sites. This allows a potential additional source of emissions to atmosphere to be readily distinguished from adjacent sources, should gas production take place. The surveys have used ethane:methane (C2:C1) ratios to separate combustion, thermogenic gas and biogenic sources. Sample collection of source plumes followed by high precision δ13C analysis of methane, to separate and isotopically characterise sources, adds additional biogenic source distinction between active and closed landfills, and ruminant eructations from manure. The surveys show that both drill sites and adjacent fixed monitoring sites have cow barns and gas network pipeline leaks as sources of methane within a 1 km range. These two sources are readily separated by isotopes (δ13C of −67 to −58‰ for barns, compared to −43 to −39‰ for gas leaks), and ethane:methane ratios (0.05 for gas leaks). Under a well-mixed daytime atmospheric boundary layer these sources are generally detectable as above baseline elevations up to 100 m downwind for gas leaks and up to 500 m downwind for populated cow barns. It is considered that careful analysis of these proxies for unconventional production gas, if and when available, will allow any fugitive emissions from operations to be distinguished from surrounding sources

    δ13C methane source signatures from tropical wetland and rice field emissions

    Get PDF
    The atmospheric methane (CH4) burden is rising sharply, but the causes are still not well understood. One factor of uncertainty is the importance of tropical CH4 emissions into the global mix. Isotopic signatures of major sources remain poorly constrained, despite their usefulness in constraining the global methane budget. Here, a collection of new δ13CCH4 signatures is presented for a range of tropical wetlands and rice fields determined from air samples collected during campaigns from 2016 to 2020. Long-term monitoring of δ13CCH4 in ambient air has been conducted at the Chacaltaya observatory, Bolivia and Southern Botswana. Both long-term records are dominated by biogenic CH4 sources, with isotopic signatures expected from wetland sources. From the longer-term Bolivian record, a seasonal isotopic shift is observed corresponding to wetland extent suggesting that there is input of relatively isotopically light CH4 to the atmosphere during periods of reduced wetland extent. This new data expands the geographical extent and range of measurements of tropical wetland and rice δ13CCH4 sources and hints at significant seasonal variation in tropical wetland δ13CCH4 signatures which may be important to capture in future global and regional models. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’

    Stable isotopic signatures of methane from waste sources through atmospheric measurements

    Get PDF
    This study aimed to characterize the carbon isotopic signatures (δ13C-CH4) of several methane waste sources, predominantly in the UK, and during field campaigns in the Netherlands and Turkey. CH4 plumes emitted from waste sources were detected during mobile surveys using a cavity ring-down spectroscopy (CRDS) analyser. Air samples were collected in the plumes for subsequent isotope analysis by gas chromatography isotope ratio mass spectrometry (GC-IRMS) to characterize δ13C-CH4. The isotopic signatures were determined through a Keeling plot approach and the bivariate correlated errors and intrinsic scatter (BCES) fitting method. The δ13C-CH4 and δ2H-CH4 signatures were identified from biogas plants (−54.6 ± 5.6‰, n = 34; −314.4 ± 23‰ n = 3), landfills (−56.8 ± 2.3‰, n = 43; −268.2 ± 2.1‰, n = 2), sewage treatment plants (−51.6 ± 2.2‰, n = 15; −303.9 ± 22‰, n = 6), composting facilities (−54.7 ± 3.9‰, n = 6), a landfill leachate treatment plant (−57.1 ± 1.8‰, n = 2), one water treatment plant (−53.7 ± 0.1‰) and a waste recycling facility (−53.2 ± 0.2‰). The overall signature of 71 waste sources ranged from −64.4 to −44.3‰, with an average of −55.1 ± 4.1‰ (n = 102) for δ13C, −341 to −267‰, with an average of −300.3 ± 25‰ (n = 11) for δ2H, which can be distinguished from other source types in the UK such as gas leaks and ruminants. The study also demonstrates that δ2H-CH4 signatures, in addition to δ13C-CH4, can aid in better waste source apportionment and increase the granularity of isotope data required to improve regional modelling

    Stable isotopic signatures of methane from waste sources through atmospheric measurements

    Get PDF
    This study aimed to characterize the carbon isotopic signatures (δ13C-CH4) of several methane waste sources, predominantly in the UK, and during field campaigns in the Netherlands and Turkey. CH4 plumes emitted from waste sources were detected during mobile surveys using a cavity ring-down spectroscopy (CRDS) analyser. Air samples were collected in the plumes for subsequent isotope analysis by gas chromatography isotope ratio mass spectrometry (GC-IRMS) to characterize δ13C-CH4. The isotopic signatures were determined through a Keeling plot approach and the bivariate correlated errors and intrinsic scatter (BCES) fitting method. The δ13C-CH4 and δ2H-CH4 signatures were identified from biogas plants (−54.6 ± 5.6‰, n = 34; −314.4 ± 23‰ n = 3), landfills (−56.8 ± 2.3‰, n = 43; −268.2 ± 2.1‰, n = 2), sewage treatment plants (−51.6 ± 2.2‰, n = 15; −303.9 ± 22‰, n = 6), composting facilities (−54.7 ± 3.9‰, n = 6), a landfill leachate treatment plant (−57.1 ± 1.8‰, n = 2), one water treatment plant (−53.7 ± 0.1‰) and a waste recycling facility (−53.2 ± 0.2‰). The overall signature of 71 waste sources ranged from −64.4 to −44.3‰, with an average of −55.1 ± 4.1‰ (n = 102) for δ13C, −341 to −267‰, with an average of −300.3 ± 25‰ (n = 11) for δ2H, which can be distinguished from other source types in the UK such as gas leaks and ruminants. The study also demonstrates that δ2H-CH4 signatures, in addition to δ13C-CH4, can aid in better waste source apportionment and increase the granularity of isotope data required to improve regional modelling

    Escape of methane gas from the seabed along the West Spitsbergen continental margin

    Get PDF
    More than 250 plumes of gas bubbles have been discovered emanating from the seabed of the West Spitsbergen continental margin, in a depth range of 150-400 m, at and above the present upper limit of the gas hydrate stability zone (GHSZ). Some of the plumes extend upward to within 50 m of the sea surface. The gas is predominantly methane. Warming of the northward-flowing West Spitsbergen current by 1°C over the last thirty years is likely to have increased the release of methane from the seabed by reducing the extent of the GHSZ, causing the liberation of methane from decomposing hydrate. If this process becomes widespread along Arctic continental margins, tens of Teragrams of methane per year could be released into the ocean

    Stable isotopic signatures of methane from waste sources through atmospheric measurements

    No full text
    This study aimed to characterize the carbon isotopic signatures (δ13C-CH4) of several methane waste sources, predominantly in the UK, and during field campaigns in the Netherlands and Turkey. CH4 plumes emitted from waste sources were detected during mobile surveys using a cavity ring-down spectroscopy (CRDS) analyser. Air samples were collected in the plumes for subsequent isotope analysis by gas chromatography isotope ratio mass spectrometry (GC-IRMS) to characterize δ13C-CH4. The isotopic signatures were determined through a Keeling plot approach and the bivariate correlated errors and intrinsic scatter (BCES) fitting method. The δ13C-CH4 and δ2H-CH4 signatures were identified from biogas plants (−54.6 ± 5.6‰, n = 34; −314.4 ± 23‰ n = 3), landfills (−56.8 ± 2.3‰, n = 43; −268.2 ± 2.1‰, n = 2), sewage treatment plants (−51.6 ± 2.2‰, n = 15; −303.9 ± 22‰, n = 6), composting facilities (−54.7 ± 3.9‰, n = 6), a landfill leachate treatment plant (−57.1 ± 1.8‰, n = 2), one water treatment plant (−53.7 ± 0.1‰) and a waste recycling facility (−53.2 ± 0.2‰). The overall signature of 71 waste sources ranged from −64.4 to −44.3‰, with an average of −55.1 ± 4.1‰ (n = 102) for δ13C, −341 to −267‰, with an average of −300.3 ± 25‰ (n = 11) for δ2H, which can be distinguished from other source types in the UK such as gas leaks and ruminants. The study also demonstrates that δ2H-CH4 signatures, in addition to δ13C-CH4, can aid in better waste source apportionment and increase the granularity of isotope data required to improve regional modelling
    corecore