184 research outputs found
Random interactions and spin-glass thermodynamic transition in the hole-doped Haldane system YCaBaNiO
Magnetization, DC and AC bulk susceptibility of the =1 Haldane chain
system doped with electronic holes, YCaBaNiO
(0x0.20), have been measured and analyzed. The most striking
results are (i) a sub-Curie power law behavior of the linear susceptibility,
, for temperature lower than the Haldane gap
of the undoped compound (x=0) (ii) the existence of a spin-glass thermodynamic
transition at = 2-3 K. These findings are consistent with (i) random
couplings within the chains between the spin degrees of freedom induced by hole
doping, (ii) the existence of ferromagnetic bonds that induce magnetic
frustration when interchain interactions come into play at low temperature.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
Iron biogeochemistry in Antarctic pack ice during SIPEX-2
Our study quantified the spatial and temporal distribution of Fe and ancillary biogeochemical parameters at six stations visited during an interdisciplinary Australian Antarctic marine science voyage (SIPEX-2) within the East Antarctic first-year pack ice zone during SeptemberâOctober 2012. Unlike previous studies in the area, the sea ice Chlorophyll a, Particulate Organic Carbon and Nitrogen (POC and PON) maxima did not occur at the ice/water interface because of the snow loading and dynamic processes under which the sea ice formed. Iron in sea ice ranged from 0.9 to 17.4 nM for the dissolved (<0.2 ”m) fraction and 0.04 to 990 nM for the particulate (>0.2 ”m) fraction. Our results highlight that the concentration of particulate Fe in sea ice was highest when approaching the continent. The high POC concentration and high particulate iron to aluminium ratio in sea ice samples demonstrate that 71% of the particulate Fe was biogenic in composition. Our estimated Fe flux from melting pack ice to East Antarctic surface waters over a 30 day melting period was 0.2 ”mol/m2/d of DFe, 2.7 ”mol/m2/d of biogenic PFe and 1.3 ”mol/m2/d of lithogenic PFe. These estimates suggest that the fertilization potential of the particulate fraction of Fe may have been previously underestimated due to the assumption that it is primarily lithogenic in composition. Our new measurements and calculated fluxes indicate that a large fraction of the total Fe pool within sea ice may be bioavailable and therefore, effective in promoting primary productivity in the marginal ice zone
The neodymium isotope fingerprint of Adélie coast bottom water
AdĂ©lie Land Bottom Water (ALBW), a variety of Antarctic Bottom Water formed off the AdĂ©lie Land coast of East Antarctica, ventilates the abyssal layers of the Australian sector of the Southern Ocean as well as the eastern Indian and Pacific Oceans. We present the first dissolved neodymium (Nd) isotope and concentration measurements for ALBW. The summertime signature of ALBW is characterized by ΔNd = â8.9, distinct from Ross Sea Bottom Water, and similar to Weddell Sea Bottom Water. AdĂ©lie Land Shelf Water, the precursor water mass for wintertime ALBW, features the least radiogenic Nd fingerprint observed around Antarctica to date (ΔNd = â9.9). Local geology around Antarctica is important in setting the chemical signature of individual varieties of Antarctic Bottom Water, evident from the shelf water signature, which should be considered in the absence of direct wintertime observations
Methods for biogeochemical studies of sea ice: The state of the art, caveats, and recommendations
AbstractOver the past two decades, with recognition that the oceanâs sea-ice cover is neither insensitive to climate change nor a barrier to light and matter, research in sea-ice biogeochemistry has accelerated significantly, bringing together a multi-disciplinary community from a variety of fields. This disciplinary diversity has contributed a wide range of methodological techniques and approaches to sea-ice studies, complicating comparisons of the results and the development of conceptual and numerical models to describe the important biogeochemical processes occurring in sea ice. Almost all chemical elements, compounds, and biogeochemical processes relevant to Earth system science are measured in sea ice, with published methods available for determining biomass, pigments, net community production, primary production, bacterial activity, macronutrients, numerous natural and anthropogenic organic compounds, trace elements, reactive and inert gases, sulfur species, the carbon dioxide system parameters, stable isotopes, and water-ice-atmosphere fluxes of gases, liquids, and solids. For most of these measurements, multiple sampling and processing techniques are available, but to date there has been little intercomparison or intercalibration between methods. In addition, researchers collect different types of ancillary data and document their samples differently, further confounding comparisons between studies. These problems are compounded by the heterogeneity of sea ice, in which even adjacent cores can have dramatically different biogeochemical compositions. We recommend that, in future investigations, researchers design their programs based on nested sampling patterns, collect a core suite of ancillary measurements, and employ a standard approach for sample identification and documentation. In addition, intercalibration exercises are most critically needed for measurements of biomass, primary production, nutrients, dissolved and particulate organic matter (including exopolymers), the CO2 system, air-ice gas fluxes, and aerosol production. We also encourage the development of in situ probes robust enough for long-term deployment in sea ice, particularly for biological parameters, the CO2 system, and other gases.This manuscript is a product of SCOR working group 140 on Biogeochemical Exchange Processes at Sea-Ice Interfaces
(BEPSII); we thank BEPSII chairs Jacqueline Stefels and Nadja Steiner and SCOR executive director Ed Urban for their
practical and moral support of this endeavour. This manuscript was first conceived at an EU COST Action 735 workshop
held in Amsterdam in April 2011; in addition to COST 735, we thank the other participants of the âmethodsâ break-out
group at that meeting, namely Gerhard Dieckmann, Christoph Garbe, and Claire Hughes. Our editors, Steve Ackley and
Jody Deming, and our reviewers, Mats Granskog and two anonymous reviewers, provided invaluable advice that not only
identified and helped fill in some gaps, but also suggested additional ways to make what is by nature a rather dry subject
(methods) at least a bit more interesting and accessible. We also thank the librarians at the Institute of Ocean Sciences for
their unflagging efforts to track down the more obscure references we required. Finally, and most importantly, we thank
everyone who has braved the unknown and made the new measurements that have helped build sea-ice biogeochemistry
into the robust and exciting field it has become.This is the final published article, originally published in Elementa: Science of the Anthropocene, 3: 000038, doi: 10.12952/journal.elementa.00003
The value of Antarctic and Southern Ocean ecosystem services
Antarctica and the Southern Ocean provide numerous ecosystem services that benefit people globally, but many are âinvisibleâ to markets and to some decision makers. A subset of these services â Antarctic tourism, commercial fisheries, and a suite of inter-related regulating services â are conservatively valued at ~US $180 billion annually, highlighting their importance
Methods for biogeochemical studies of sea ice: The state of the art, caveats, and recommendations
Over the past two decades, with recognition that the oceanâs sea-ice cover is neither insensitive to climate change nor a barrier to light and matter, research in sea-ice biogeochemistry has accelerated significantly, bringing together a multi-disciplinary community from a variety of fields. This disciplinary diversity has contributed a wide range of methodological techniques and approaches to sea-ice studies, complicating comparisons of the results and the development of conceptual and numerical models to describe the important biogeochemical processes occurring in sea ice. Almost all chemical elements, compounds, and biogeochemical processes relevant to Earth system science are measured in sea ice, with published methods available for determining biomass, pigments, net community production, primary production, bacterial activity, macronutrients, numerous natural and anthropogenic organic compounds, trace elements, reactive and inert gases, sulfur species, the carbon dioxide system parameters, stable isotopes, and water-ice-atmosphere fluxes of gases, liquids, and solids. For most of these measurements, multiple sampling and processing techniques are available, but to date there has been little intercomparison or intercalibration between methods. In addition, researchers collect different types of ancillary data and document their samples differently, further confounding comparisons between studies. These problems are compounded by the heterogeneity of sea ice, in which even adjacent cores can have dramatically different biogeochemical compositions. We recommend that, in future investigations, researchers design their programs based on nested sampling patterns, collect a core suite of ancillary measurements, and employ a standard approach for sample identification and documentation. In addition, intercalibration exercises are most critically needed for measurements of biomass, primary production, nutrients, dissolved and particulate organic matter (including exopolymers), the CO2 system, air-ice gas fluxes, and aerosol production. We also encourage the development of in situ probes robust enough for long-term deployment in sea ice, particularly for biological parameters, the CO2 system, and other gases
Sea ice meltwater and circumpolar deep water drive contrasting productivity in three Antarctic polynyas
In the Southern Ocean, polynyas exhibit enhanced rates of primary productivity and represent large seasonal sinks for atmospheric CO2. Three contrasting east Antarctic polynyas were visited in late December to early January 2017: the Dalton, Mertz, and Ninnis polynyas. In the Mertz and Ninnis polynyas, phytoplankton biomass (average of 322 and 354Â mg chlorophyll a (Chl a)/m2, respectively) and net community production (5.3 and 4.6Â mol C/m2, respectively) were approximately 3 times those measured in the Dalton polynya (average of 122Â mg Chl a/m2 and 1.8Â mol C/m2). Phytoplankton communities also differed between the polynyas. Diatoms were thriving in the Mertz and Ninnis polynyas but not in the Dalton polynya, where Phaeocystis antarctica dominated. These strong regional differences were explored using physiological, biological, and physical parameters. The most likely drivers of the observed higher productivity in the Mertz and Ninnis were the relatively shallow inflow of ironârich modified Circumpolar Deep Water onto the shelf as well as a very large sea ice meltwater contribution. The productivity contrast between the three polynyas could not be explained by (1) the input of glacial meltwater, (2) the presence of Ice Shelf Water, or (3) stratification of the mixed layer. Our results show that physical drivers regulate the productivity of polynyas, suggesting that the response of biological productivity and carbon export to future change will vary among polynyas
- âŠ