9 research outputs found

    High-throughput gene discovery in the rat

    Get PDF
    The rat is an important animal model for human diseases and is widely used in physiology. In this article we present a new strategy for gene discovery based on the production of ESTs from serially subtracted and normalized cDNA libraries, and we describe its application for the development of a comprehensive nonredundant collection of rat ESTs. Our new strategy appears to yield substantially more EST clusters per ESTs sequenced than do previous approaches that did not use serial subtraction. However, multiple rounds of library subtraction resulted in high frequencies of otherwise rare internally primed cDNAs, defining the limits of this powerful approach. To date, we have generated >200,000 3′ ESTs from >100 cDNA libraries representing a wide range of tissues and developmental stages of the laboratory rat. Most importantly, we have contributed to ∼50,000 rat UniGene clusters. We have identified, arrayed, and derived 5′ ESTs from >30,000 unique rat cDNA clones. Complete information, including radiation hybrid mapping data, is also maintained locally at http://genome.uiowa.edu/clcg.html. All of the sequences described in this article have been submitted to the dbEST division of the NCBI

    Nuclear accumulation of glioma-associated oncogene 2 protein and enhanced expression of forkhead-box transcription factor M1 protein in human hepatocellular carcinoma

    No full text
    The hedgehog (Hh) signaling pathway has been reported to be crucial in human carcinogenesis and tumor progression. Glioma-associated oncogenes (Gli), are zinc finger transcription factors which mediate the transcriptional response to Hh signaling. To explore the role of Gli in the development and progression of hepatocellular carcinoma (HCC), we investigated the expression of Gli2 and FoxM1 (forkhead-box transcription factor M1) which is one of the Gli downstream target genes modulating cell cycle progression in 91 specimens of human HCCs with immunohistochemistry. These immunostaining results were compared with various clinicopathologic parameters. Immunoreactivity of Gli2 and FoxM1 was observed respectively in 84.6% (77/91) and 80.2% (73/91) cases of HCC tumor tissues, and this was considerably higher than expression in the peritumoral tissues. Distribution of Gli2 and FoxM1 proteins in tumor cells was nuclear with or without cytoplasmic staining, or cytoplasmic alone. Statistically, increased nuclear immunopositivity of Gli2 protein correlated significantly with poorer tumor differentiation (P<0.05), as well as with portal vein tumor thrombosis (P<0.05). In addition, overexpression of FoxM1 protein was significantly associated with increased tumor grade (P<0.01) and advanced tumor stage (P<0.05). Moreover, there was a significant association between the expressions of Gli2 and FoxM1 proteins in HCC (r=0.464, P=0.000). This is consistent with the concept that in human HCC, the Hh signaling pathway is involved in the differentiation and proliferation of tumor cells, in part through inducing nuclear accumulation of Gli2 protein and subsequent upregulation of FoxM1 protein

    Expression and distribution of cytokeratin 8-18 intermediate filaments in bovine antral follicles and corpus luteum: An intrinsic mechanism of resistance to apoptosis?

    No full text
    Apoptosis is a mechanism of cell elimination during follicular atresia and luteal regression. Recent evidence suggests sensitivity to apoptosis in some cell types is partly dependent upon cytokeratin-containing intermediate filaments. Specifically, cytokeratin 8/18 (CK8/18) filaments are thought to impart resistance to apoptosis. Here, cytokeratin filament expression within bovine ovarian follicles and corpora lutea (CL) was characterized and the potential relationship between cellspecific CK8/18 expression and apoptosis explored. Immunoprecipitation and western blot analysis confirmed CK8 associates with CK18 to form CK8/18 heterodimeric filaments within bovine ovarian cells. Immunostaining revealed populations of CK18-positive (CK18+) cells in healthy growing follicles that increased in postovulatory follicles. Atretic follicles at all stages of atresia also contained some CK18+ cells. However, no CK18+ cells were detected in primordial or primary follicles. In CL, developing CL contained a higher proportion of CK18+ cells (~35%, range 30-70%) than mature CL (~16%) and regressing CL (~5%; P<0.05, n = 3-5 CL/stage), suggesting CK8/18 filament expression diminishes over time, as luteal cells become more susceptible to apoptosis. Dual-fluorescence labeling for CK18 and a cell death marker (TUNEL labeling) confirmed this view, demonstrating less death of CK18+ than CK18- luteal cells throughout the estrous cycle (P<0.05). The results indicate differential expression of CK8/18 filaments occurs in cells of bovine ovarian follicles and CL throughout the estrous cycle. The prevalence and cell-specific pattern of cytokeratin expression in these structures is consistent with the concept these filaments might impart resistance to apoptosis in ovarian cells as is seen in other cell types
    corecore