406 research outputs found

    Inhibition of Tat activity by the HEXIM1 protein

    Get PDF
    BACKGROUND: The positive transcription elongation factor b (P-TEFb) composed by CDK9/CyclinT1 subunits is a dedicated co-factor of HIV transcriptional transactivator Tat protein. Transcription driven by the long terminal repeat (LTR) of HIV involves formation of a quaternary complex between P-TEFb, Tat and the TAR element. This recruitment is necessary to enhance the processivity of RNA Pol II from the HIV-1 5' LTR promoter. The activity of P-TEFb is regulated in vivo and in vitro by the HEXIM1/7SK snRNA ribonucleic-protein complex. RESULTS: Here we report that Tat transactivation is effectively inhibited by co-expression of HEXIM1 or its paralog HEXIM2. HEXIM1 expression specifically represses transcription mediated by the direct activation of P-TEFb through artificial recruitment of GAL4-CycT1. Using appropriate HEXIM1 mutants we determined that effective Tat-inhibition entails the 7SK snRNA basic recognition motif as well as the C-terminus region required for interaction with cyclin T1. Enhanced expression of HEXIM1 protein modestly affects P-TEFb activity, suggesting that HEXIM1-mediated repression of Tat activity is not due to a global inhibition of cellular transcription. CONCLUSION: These results point to a pivotal role of P-TEFb for Tat's optimal transcription activity and suggest that cellular proteins that regulate P-TEFb activity might exert profound effects on Tat function in vivo

    Protein Kinase A Regulatory Subunits in Human Adipose Tissue: Decreased R2B Expression and Activity in Adipocytes From Obese Subjects

    Get PDF
    OBJECTIVE—In human adipocytes, the cAMP-dependent pathway mediates signals originating from β-adrenergic activation, thus playing a key role in the regulation of important metabolic processes, i.e., lipolysis and thermogenesis. Cyclic AMP effects are mainly mediated by protein kinase A (PKA), whose R2B regulatory isoform is the most expressed in mouse adipose tissue, where it protects against diet-induced obesity and fatty liver development. The aim of the study was to investigate possible differences in R2B expression, PKA activity, and lipolysis in adipose tissues from obese and nonobese subjects

    Primary papillary epithelial tumour of the sella: expanding the spectrum of TTF-1-positive sellar lesions.

    Get PDF
    To describe four novel primary epithelial tumours of the sella with papillary architecture and Thyroid Transcription Factor 1 (TTF-1) expression. Paraffin-embedded tissue from the four cases and recurrence of patient 1 was investigated with haematoxylin-eosin, special histochemical stains, immunohistochemistry with a broad panel of antibodies and next-generation sequencing. The ultrastructure of one tumour was studied in tissue retrieved from paraffin. The lesions occurred in three females aged 20, 26 and 42 years and a male aged 49 years. They presented with signs and symptoms secondary to pituitary stalk compression. Preoperative neuroimaging documented mixed solid and cystic, enhancing sellar masses with suprasellar extension. Histologically, the tumours showed thin papillae lined by a single layer of cytokeratin and TTF-1-positive cuboidal and cylindrical cells with mildly atypical nucleus. Next-generation sequencing performed in three cases did not identify any mutations. The main differential diagnosis included metastasis from lung or thyroid carcinoma, extraventricular choroid plexus papilloma and sellar ependymoma. We suggest the descriptive term of primary papillary epithelial tumour of the sella (PPETS) for this entity and propose that it could represent the intracranial equivalent of thyroid-like low-grade nasopharyngeal papillary adenocarcinoma. The cell of origin of PPETS remains undetermined although the intense and ubiquitous expression of TTF-1 may suggest a derivation from the infundibulum or ventricular recess. Our study expands the spectrum of sellar TTF-1-positive tumour and challenges the view that they all derive from pituicytes

    Topical essential fatty acid oil on wounds: local and systemic effects

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFUNADERM - FUNDO DE APOIO À DERMATOLOGIA DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORBackground The use of medicinal plants and their derivatives is increasing, and approximately one-third of all traditional herbal medicines are intended for wound treatment. Natural products used in these treatments include vegetable oils, which are rich in essential fatty acids. Once in contact with an ulcerative surface, the oil reaches the blood and lymphatic vessels, thus eliciting systemic effects. ObjectiveThis study evaluated the local and possible systemic effects of essential fatty acids (sunflower oil) applied topically to rat wounds. Methods Cutaneous punch wounds (6 mm) were produced on the dorsa of 30 rats. Saline (SS), mineral oil (MO) or essential fatty acid (EFA) solutions were applied topically. Healing was evaluated after 2, 4 and 10 days (n = 5 per group) by visual and histological/morphometric examination, second harmonic generation (SHG) microscopy, and cytokine and growth factor quantification in the scar tissue (real-time PCR) and in serum (ELISA). Results MO/EFA-treated animals had higher IGF-1, leptin, IL-6 and IFN-gamma mRNA expression and lower serum IL-6 levels than the control (SS/MO) animals. SHG analysis showed no difference in collagen density between the animals treated with MO and EFA. Conclusion EFA treatment induces topical (observed by local IGF-1, leptin, IL-6 and IFN-gamma production) and systemic effects, lowering IL-6 levels in the serum. As the oil is widely used to shorten ulcer healing time, studies are needed to evaluate the treatment safety and possible undesired effects.141115FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFUNADERM - FUNDO DE APOIO À DERMATOLOGIA DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFUNADERM - FUNDO DE APOIO À DERMATOLOGIA DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIOR07/59319-5015/2014043/201601P-04520-201

    Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism

    Get PDF
    X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.The work was supported by the following funding sources: Fondazione Telethon, Italy grant no. GGP20130 (to G.T.); Society for Endocrinology equipment grant (to G.T.); Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health (NIH) Research project Z01-HD008920 (to C.A.S., supporting G.T., F.R.F.); Fonds d’Investissement pour la Recherche Scientifique (FIRS) of the Centre Hospitalier Universitaire de Liège (to A.F.D. and A.B.); the JABBS Foundation, UK (to A.B.); and Novo Nordisk Belgium Educational Grant, Belgium (to A.F.D. and A.B.). M.F. was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#800396) and a Juan de la Cierva-Formación fellowship from the Spanish Ministry of Science and Innovation (FJC2018-038233-I). G.T. was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#843843). A.F.D. and D.A. were supported by Action de Recherche Concertée (ARC) Grant 17/21-01 from Liège University. D.A. was supported by grants from Télévie (7461117 F, 7454719 F) and the Léon Fredericq Foundation, Belgium

    FLNA is implicated in pulmonary neuroendocrine tumors aggressiveness and progression

    Get PDF
    Pulmonary neuroendocrine tumors (PNTs) comprise different neoplasms, ranging from low grade carcinoids to the highly malignant small cell lung cancers. Several studies identified the cytoskeleton protein Filamin A (FLNA) as determinant in cancer progression and metastasis, but the role of FLNA in PNT aggressiveness and progression is still unknown. We evaluated FLNA expression in PNTs with different grade of differentiation, the role of FLNA in cell proliferation, colony formation, angiogenesis, cell adhesion and migration in PNT cell line (H727 cells) and primary cultures and the possible interaction between FLNA and Rap1-GTPase. FLNA is highly expressed in PNTs with high malignant grade. FLNA silencing reduces cyclin D1 levels (-51\uc2\ub15, p < 0.001) and cell proliferation in PNT cells (-37\uc2\ub14, p < 0.05), colony formation and VEGF expression (-39\uc2\ub19%, p < 0.01) in H727 cells. FLNA and Rap1 co-localize in cellular protrusions and FLNA silencing up-regulates Rap1 expression (+73\uc2\ub118%, p < 0.01). Rap1 silencing prevents cell adhesion increase (+43%\uc2\ub118%, p < 0.01) and cell migration decrease (-56\uc2\ub17%, p < 0.01) induced by FLNA silencing, without affecting cell proliferation reduction. In conclusion, FLNA is implicated in PNT progression, in part through Rap1, thus providing a potential diagnostic and therapeutic target

    Emerging therapies in pheochromocytoma and paraganglioma: Immune checkpoint inhibitors in the starting blocks

    Get PDF
    Pheochromocytoma and paraganglioma are neuroendocrine neoplasms, originating in the adrenal medulla and in parasympathetic and sympathetic autonomic nervous system ganglia, respec-tively. They usually present as localized tumours curable with surgery. However, these tumours may exhibit heterogeneous clinical course, ranging from no/minimal progression to aggressive (progres-sive/metastatic) behavior. For this setting of patients, current therapies are unsatisfactory. Immune checkpoint inhibitors have shown outstanding results for several types of solid cancers. We therefore aimed to summarize and discuss available data on efficacy and safety of current FDA-approved immune checkpoint inhibitors in patients with pheochromocytoma and paraganglioma. After an extensive search, we found 15 useful data sources (four full-published articles, four supplements of scientific journals, seven ongoing registered clinical trials). The data we detected, even with the limit of the small number of patients treated, make a great expectation on the therapeutic use of immune checkpoint inhibitors. Besides, the newly detected predictors of response will (hopefully) be of great helps in selecting the subset of patients that might benefit the most from this class of drugs. Finally, new trials are in the starting blocks, and they are expected to shed in the next future new light on a therapy, which is considered a milestone in oncology

    Pseudohypoparathyroidism and GNAS epigenetic defects : clinical evaluation of Albright hereditary osteodystrophy and molecular analysis in 40 patients

    Get PDF
    Context: The two main subtypes of pseudohypoparathyroidism (PHP), PHP-Ia and -Ib, are caused by mutations in GNAS exons 1-13 and methylation defects in the imprinted GNAS cluster, respectively. PHP-Ia patients show Albright hereditary osteodystrophy (AHO) and resistance toward PTH and additional hormones, whereas PHP-Ib patients do not have AHO, and hormone resistance appears to be limited to PTH and TSH. Recently, methylation defects have been detected in few patients with PHP and mild AHO, indicating a molecular overlap between the two forms. Objectives: The aim of the study was to screen patients with clinically diagnosed PHP-Ia for methylation defects and to investigate the presence of correlations between the molecular findings and AHO severity. Patients and Methods: We investigated differential methylation of GNAS regions and STX16 microdeletions in genomicDNAfrom 40 patients with sporadicAHOand multihormone resistance, with no mutations in Gs -coding GNAS exons. Results: Molecular analysis showed GNAS cluster imprinting defects in 24 of the 40 patients analyzed. NoSTX16 deletion was detected. The presence of imprinting defects was not associated with the severity of AHO or with specific AHO signs. Conclusions: We report the largest series of the literature of patients with clinical AHO and multihormone resistance and no mutation in the Gs gene. Our findings of frequent GNAS imprinting defects further confirm the existence of an overlap between molecular and clinical features of PHP-Ia and PHP-Ib and highlight the necessity of a new clinical classification of the disease that takes into account the recent knowledge on the molecular basis underlying these defects
    corecore