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Abstract 

Bakker, J.W. de, and J.H.A. Warmerdam, Four domains for concurrency, Theoretical Computer 

Science 90 (1991) 127-149. 

We give four domains for concurrency in a uniform way by means of domain equations. The 

domains are intended for modelling the four possible combinations of linear time versus branching 

time, and of interleaving versus noninterleaving concurrency. We use the linear time, noninter- 

leaved domain to give operational and denotational semantics for a simple concurrent language 

with recursion, and prove that 0 = !3. 

Prologue 

Among the reasons to fondly remember my first IFIP Congress (New York, 1965), 

I recall a meeting with the late Professors Andrei Ershov and Aad van Wijngaarden, 

both then already famous scholars, who strongly encouraged me to continue my 

incipient work on programming language semantics. 

Among the reasons to somewhat embarrassedly remember the 6th MFCS meeting 

(Tatranska Lomnica, 1977), I recall a discussion with Andrei Ershov on my unsatis- 

factory first steps towards an understanding of concurrency semantics and infinite 

behaviour (cf. [6]). The paper to follow reports on how we spent the 1980s in 

Amsterdam working to remedy this. 

Among the reasons to sadly remember my otherwise so enjoyable visit to 

Akademgorodok in the fall of 1988, I recall in sorrow the news about the mortal 

illness and death of Academician Andrei Ershov, eminent computer scientist and 

world specialist in programming. 

Jaco de Bakker, Amsterdam, May 1990 
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1. Introduction 

Since 1981, the Amsterdam Concurrency Group (ACG) has been investigating 

concurrency semantics employing the tools of metric topology. The key observation 

explaining the relevance of the metric approach is the following: Consider two 

computations pi, p2. A natural distance d (p, , pz) may be defined by putting 

d(p,,pJ=2-” 

where n (A sup{ k: p,[ k] = p2[ k]}) is the length of the longest common initial segment 

of p, and p2. Details vary with the form of the p, , p2. If computations are given as 

words (finite or infinite sequences of atomic actions), we take the standard notion 

of prefix; if p, , p2 are trees, we use truncation at depth k for p[ k]. Other kinds of 

computations, e.g. involving function application, may be accommodated as well. 

Complete metric spaces (ems’s) have the characteristic property that Cauchy 

sequences always have limits; this motivates their use for smooth handling of infinite 

behaviour. In addition, each contracting function f: (M, d)-+(M, d), for (M, d) a 

ems, has a unique fixed point (by Banach’s theorem). Contracting functions 

f: (M, , d,) * (MI, d2) bring points closer together: it is required that, for some real 

(Y E [0, l), d,(f(x),f(y)) s a. d,(x, y). Uniqueness of fixed points may conveniently 

be exploited in a variety of situations. 

In the paper [17] we showed how to apply metric techniques to solve domain 

equations 

P=1(P) (1.1) 

or, rather, (P, d)=9((P, d)), with (P, d) the ems to be determined, = isometry, 

and 9 a mapping built from given ems’s (A, dA), . . . , the unknown (P, d), and 

composition rules such as U (disjoint union), x (Cartesian product), and gcclured( .) 

(closed subsets of .). Section 2 will provide more information on this method. 

In a series of papers, starting with [ 17,10, 12, 13, 141, we developed denotational 

(a) and operational (6) semantics for a number of simple languages with concur- 

rency. Here a denotational semantics 9 for a language 2 is given as a map- 

ping: .=!Z--+ PI (for some P, solving (1.1) for a suitable sl), which is compositional 

and treats recursion through fixed points. 6 is a mapping : .Y -+ P2, which is derived 

from some Plotkin-style transition system [27], and which handles recursion through 

syntactic substitution. Also, in the papers referred to, we encounter the contrasting 

themes of linear time (LT, sets of sequences) versus branching time (BT, tree-like 

structures) semantic domains, and of uniform (uninterpreted atomic actions) versus 

nonuniform (interpreted actions) concurrency. 

After an initial phase in which ACG developed the basic machinery of metric 

semantics, the group directed its efforts towards concurrency in the setting of 

object-oriented and, subsequently, of logic programming. In a collaborative effort 

with Philips Research Eindhoven, within the framework of a project with substantial 

support from the ESPRIT programme, we designed operational and denotational 
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semantics for the parallel object-oriented language POOL, and investigated the 

relationship between the respective models [2, 1,3,4,9,29]. Throughout these 

studies, fruitful use was made of the metric formalism. Two further papers deserve 

special mention. In [5], the technique from [ 171 for solving domain equations (1.1) 

was generalized and phrased in the category of cms’s. In [24], a powerful method 

was proposed to establish equivalences such as 6 = 9, by (i) dejining 0 as a fixed 

point of a contracting higher-order mapping @ (obtained from an appropriate 

transition system), and (ii) proving that 5@ = Q(g). By Banach’s theorem, 0 = 6S is 

then immediate (cf. also [13], where several more examples of the Kok-Rutten- 

method are treated). 

Parallelism in the setting of logic programming (LP) was first studied in [7,23]. 

The paper [7] proposed to investigate control flow in LP abstracting from the logical 

intricacies (no substitutions, refutations etc.), and shows how the basic metric 

techniques apply as well to this, at first sight rather remote, territory. Related work 

includes [ 11, 191. 

In all of the papers mentioned so far, parallel composition has been handled by 

the so-called interleaving model: typically, the meaning of the statement s = a /) b is 

given as {ab, ba} in an LT, or as shown in Fig. 1 in a BT-style model. Accordingly, 

the equivalence (*): a 11 b = (a;b) + (b;u) is valid in all such models. In recent years, 

increased attention has been paid to models of the so-called true concurrency (or 

noninterleaving) kind. A variety of domains has been developed where concurrency 

is modelled through simultaneity; thus, in these models, (*) is not satisfied. Well- 

known examples are Pratt’s pomsets [28], and the event structures of [25]. (cf. [15] 

for extensive references). 

b 

0 

a 

0 

Fig. 1. 

At last, we are in a position to formulate the goal of the present paper. We shall 

discuss a case study in metric semantics, by designing four domains for concurrency. 

These four domains will be employed to model the four possible combinations of 

linear time versus branching time, and of interleaving versus noninterleaving concur- 

rency. Contrary to the way these or related models have been presented elsewhere 

in the literature, we shall pay special attention to their development in such a way 

as to bring out their similarities rather than their differences. We shall give four 

systems of domain equations with seemingly small differences. Putting it somewhat 

differently, we want to demonstrate the power of the domain equations approach, 

by showing how four ways of looking at concurrency, all of which have been 
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advocated or attacked in vivid debates, may be seen as relatively mild variations 

on the same theme. 

Section 2 will be devoted to the four (systems of) equations. The techniques 

applied here are partly general (as in [17,5]), partly more ad-hoc, and then follow 

[ll]. Section 3 illustrates the use of domains in semantic design. We select one of 

the four domains (LT, noninterleaving). For a simple concurrent language with 

recursion, we design operational and denotational semantics based on this domain, 

and prove that B = 9. In order to establish this, we apply an extension of the 

Kok-Rutten-method which may have some interest of its own (and which is close 

to a method from [7, Section 91). Technically, this proof constitutes the main 

contribution of the present paper. For the two interleaving models, such an 

equivalence proof was already presented earlier [24, 131; for the BT-noninterleaving 

model it requires further study whether the argument of Section 3 may be appropri- 

ately modified. 

We conclude this introduction with a few words on related work. In [8], we also 

presented four domains for concurrency, but restricted to true concurrency in the 

form of synchronous step semantics only. In [16], we developed a metric pomset 

semantics for the same language as treated here. Compared to the semantics of 

Section 3, the transition system of [16] is less convincing. Only transitions of the 

form s G E are used (s finishes in one step with pomset p as result), rather than 

also transitions with intermediate steps s G s’. On the other hand, the present paper 

utilizes the same technique for handling recursion, in particular the infinitary proof 

rule, as in [16]. The pomset model may be fruitfully combined with the domain 

equations approach to cope with certain problems the methodology of the present 

paper cannot deal with. Some comments on this follow in the concluding section 

of our paper. 

2. Introduction of the domains by means of domain equations 

We assume the reader is acquainted with the notion of (complete) (ultra-) metric 

space, converging sequence, closed set, as well as the constructors a (disjoint union), 

x (Cartesian product) and gcloced(. ) (closed subsets of . ). In this paper we only 

consider distance mappings that are bounded by 1. The reader may consult [21,22] 

for (metric) topology and, for instance, [5] for the notions we use in metric semantics. 

Before we can give the domain equations in the second subsection, we need to 

introduce two new notions, a length function 1 and a constructor D. 

2.1. Introduction of two new notions: 1 and D 

Usually if we write down Ax P, or more precisely Ax id,,,(P), where P is a 

metric space with metric dp and A is a set of atomic actions (with discrete metric) 

we assume A x P is supplied with a metric daxp defined by 
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For the non-interleaving domains we need to generalize this construction to the 
case where the left-hand side of the Cartesian product contains a nondiscrete 

metric space. For this purpose we need a notion of length so that we can define a 

metric on P, x P2 by 

d P,,,((P,,P*),(P:,Ps))= 
dPI(p,, p:), 
2-/,l(,?,). dp,(P2,P;), ;I’;;: 

where IP,( p,) is the length of p, in the metric space P,. This product together with 

P, (i.e. P, u (P, x Pz)) is denoted by P, D P2. 

From now on we assume that every metric space (X, dx) is supplied with a length 

function Ix : X + {1,2,. . .}u {CO} such that 

(d,(x,y)<2-“~“/\x#y) + (lx(x)~lr\lx(y)>l) or (Ix(x)>I~Ix(~)~I). 

This amounts to saying “we cannot have a small distance between short elements 

(i.e. elements with small length), unless they are equal”. If we write a sentence like 

“the metric space X. . . ” in the sequel, we mean the metric space (X, d,) with length 

function lx. 

Definition 2.1.1. We define metric spaces A, id,,,(X), _/in(X), 9”,c(X), X,0X*, 
X, D X2, where A is some fixed set (of atomic actions) and X, X,, Xz are metric 

spaces. 

(1) 

(2) 

(3) 

(4) 

(5) 

idlIZ = X, 

d ,c,,,~w~(~, Y) =$ . dx(x, YL 

kl,lzcX) (x)=I*(x)+l. 

.MX)={XEXJIx(X)=N, 

dfi,,x, = dx I($f;n(X) xJ;u(X)), 

&n(X) = lx I@(X). 

Pnc(X) = {A G X ) A is a nonempty d,-closed subset of X}, 

d .r,,,tx,(A,W=max supdx(a,B),supdx(b,A) , 
UEA hcfl 

1 .~,,,cx,(A) =suplx(a). 
OiA 

x, iJ x2 = Cl11 x Xl) u ((21 x &I, 

dx,ux,((i, 4, (j, 4) = { >x,(z,, z2), f zi Ix,Gx,((i, z)) = IX,(Z). 
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From now on we will informally use X, G X2 as if it were X, u X, with disjoint X, 

and X2. 

(6) Let x,,xiEX, and x,,x;EX2. 

X, -X2 = X1 G (J;n(X,) x X,), 

d x,-x&x,, xl) = d,,(x,, 4); 

dx,t-.x2(x,, (4,x;>) = dxpx, ((XI) x2>, xi) = ($!;j$;,“;” 
3 

d xpx2((x, > 4, (4 > 6)) = 
d,,(x,, xi), XI f 4 2 
2-‘x,(‘l) . dx2(x2, x;), x1 = x;, 

1 x,,x,(x,) = L,(x,); ~xpx,(b,, 4) = ~X,(Xl)-t L~y2(X2). 

Note that there is a slight difference between AU (A x id,,,(P)) and A D P, namely 

dAvCAxld,,zCPJJ(a, (a, P)) = I and kP a, ( (a, p)) =$, the latter being a little more 

intuitive. In the general case, it is important that distances in P, D Pz between a 

p, E P, and a (pi, p;) ~jn(P,) x P2 may be small (not just 1). In P, D Pz there exist 

sequences ((pi,p:)), with limit PE P,. In this case Z(pf) + ~0. 

Proposition 2.1.2. (1) If the metric spaces X, X, and X2 are ultra metric, then A, 

id,,,(X), jin(X), C!?‘,,(X), X, G X2, X, r>X, are ultra metric spaces. 

(2) If the metric spaces X, X, and X2 are complete, then A, id,,,(X), p,,,(X), 

X, 13, X2, X, b X2 are complete metric spaces. 

2.2. Four systems of domain equations 

We are now able to give four sets of domain equations for the four possible 

combinations of linear time versus branching time, and of interleaving versus 

noninterleaving concurrency (Table 1). Let us explain in words what a p E P in the 

most difficult domain (noninterleaved/branching time) stands for. A process (p E P) 

is a set of branches (q E Q), standing for a set of choices. Each branch is either a 

final action (r) or a pair ((I; p)) consisting of a finite action and a resumption. An 

action (r E R) is either an atomic action (a E A) or a set of processes, standing for 

the parallel execution of these processes. 

Table 1 

Linear Time Branching Time 

Interleaved 
P-~,,<(Q) 
Q-A-Q 

P=P,,,(Q) 
Q-AC-P 

Non-interleaved 
P=P (Q) 

VI< p = p,,< (0) 
Q-Rc=-Q Q-R-P 

R-AG~,,,(id,,z(Q)) R-AG9,,,(id,,2(P)) 
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In the next section we give an operational and denotational semantics for a simple 

language, based on the linear time/noninterleaved domain. Now we illustrate the 

four domain equations by giving four different semantics for a simple statement (in 

the language to be introduced in Section 3.1). Considerthe statement a;(( bljc);e + d). 

We give, besides the formal processes denoting this statement in the four models, 

also drawings of these processes. In these pictures an open node indicates choice 

(of possibly one alternative) and nodes are closed in other cases. The “and” in a 

picture denotes (noninterleaved) parallel execution. The pictures are drawn in such 

a way that the length of the pictures (the number of node-to-node intervals) coincides 

with the length in the domains. 

Linear time/ interleaved (Fig. 2) 

~~,,,,(a;((bllc);e+d)) ={(a, (b, (c, c)>L (a, (c, (b, c))), (a, d)). 

L- b -.C._L_ 

a. C. b _-_e_ 

d L.-d 

Fig. 2. 

Branching time/ interleaved (Fig. 3) 

~dRt,ln(a;((bllc);e+d)) = {(a, {(b, {(c, (c))1), (c, {(b, {e)))), d1)). 

b 
-- c- _e__+ 

c- b __~-_L_ 

d 
-- 

Fig. 3. 

Linear timelnoninterleaved (Fig. 4) 

9 L,.Ni(a;((bljc);c+ d)) ={(a, ({b, ~1, e)), (a, d)). 

b 

< 

-- 

(I- and _e_-..-+ 

-C 

Fig. 4 
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Branching time/ noninterleaved (Fig. 5) 

9 B,,Ni(a;((bIlc);e+ d)) ={(a, {({{b], {cl>, {e]), 4)). 

b 
__O__- 

d 
-- 

Fig. 5. 

Consider the following statements to see the difference between linear time and 

branching time semantics, and between interleaved and noninterleaved semantics. 

s,=aIl(b+c), s,=allb+allc, s,=a;(b+c)+(b+c);a. 

Linear time/ interleaved 

ga~r,,n(~,) = %,I~(~J = gwn(4 = {(a, b), (a, c), (b, a), (c, a>>. 

Branching time/ interleaved 

Linear time/ noninterleaved 

9 L~,N~(sI) = gL,,Ni(Sl) ={{a, b), (~2 c>>, 

9 Lr,Ni(S3) = 9Ll,ln(S3)* 

Branching time/ noninterleaved 

9 Bt,Ni(SI) ={{{a>, {b, cI>>, 

9 ~r,iw(4 = {{{a), {b)), {{a), Ic>II, 

9 Bf,Ni(S3) = 9Br,ln(S3). 

The branching time models distinguish between sr and s2 whereas the linear time 

models do not. The noninterleaving models distinguish between S, and s3 whereas 

the interleaving models do not. 

The interleaving domain equations can be solved in the category of complete 

metric spaces as is shown in [17] and in a more general setting in [5]. The 

America-Rutten-theory cannot be applied to the noninterleaving case immediately, 

since there does not exist a notion of length in a general complete metric space, 

which is essential for our definition of the metric on a product space. We are 

convinced, however, that an adjustment of the category of complete metric spaces 

is possible, without affecting the theorem, in order to solve the above equations. 

We will briefly discuss the construction of a solution for the noninterleaved linear 

time equation in a De Bakker-Zucker-like way. 
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Definition 2.2.1. Define 

1 

Ro=A R 
and 

IT+1 = Au 9,w(id,,z(Qn)) 

Qo= Ro Q *+I = R,-Q,. 

Note that R, c R,+, and Q,, c Q,+, . Let 

1 

Qw = t_~ On, dQw = u dQt8 3 lQw = u IQ,, T 

Ro=UR,, 4, = U b,,, b, = U h,, . 
Let 

Q=z: the completion of Q,, Io(limi qi) = lim, Iow(C.ji), 

R=R,: the completion of R,,,, ZR(lim, ri) = lim, lR,(ri), 

p = P,C(Q). 

These P, Q and R satisfy the linear time/noninterleaved system of domain 

equations, which is stated in the following. 

Theorem 2.2.2. (1) _/in(R)- R,, 

(2) Q=:R=-Q, 
(3) R = ACT ~,,,(idllz(Q)). 

3. Linear time/noninterleaved semantics for a concurrent language 

In this section we show how to use the linear time/noninterleaved domain to give 

operational and denotational semantics for a simple concurrent language (2). In 

the first subsection we introduce the language. In the second subsection we give a 

transition system and derive some properties of this transition system. The third 

subsection contains the definition of an operational semantics 0, based on this 

transition system. The fourth subsection contains semantical operators which are 

the counter-parts of the syntactical operators in the language. With the aid of these 

operators we give a denotational semantics 9 for the language 2’. The fifth and 

concluding subsection will contain the proof of the equivalence of the operational 

and denotational semantics. 

3.1. The language 

First we introduce the language. For this we need two basic sets. Let (a, b, c, . . E ) A 

be a (finite or infinite) set of atomic actions and let (x E )&MA be a set of procedure 

variables. 

Definition 3.1.1. (a) The class (S E )2’ of statements is given by 

s::=aIxIs,;S*IS,+S21S,11S2. 

(b) The class (gE)_Yg of guarded statements is given by 

~~~=~l~~~l~,+~*l~,ll~*. 
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(c) The class (d E )%,e of declarations consists of mappings from 9&c to .Yg. 

(d) The class (7~ E )9’rog of programs consists of pairs n - (d 1 s) with d E %P!? 

and sg9. 

3.2. Transition system for 22 

In this subsection we give a Plotkin-style transition system and derive some 

properties about the system. 

Usually, transitions are of the form s + s’, where s and s’ are statements and a 

is an action (or a set of actions, in step semantics). The intuition is that the statement 

s can be executed by doing the action a. After this we have to proceed with statement 

s’. In true concurrency semantics, this can not be applied immediately. Consider 

the following situation: s, 9 s\ and s2 9 si. If we derive something like 

sills2 
(a,&) 

l s;]]s;, then the information is lost that a, stems from s, and a2 stems 

from s2. This information is essential, for if s; &Y s;‘, we want to combine, in the 

operational semantics, the b with only the a,, not with {a,, a,}. 

Some people proposed to use placeholders [20] in order to be able to determine 

which actions belong to some statements in a parallel construct. We will use another 

approach here. Firstly, we add transitions of the form s 4 E to our transition system, 

where q is a sequence of actions and E is the terminated statement. Secondly, instead 

of combining s, 3 si and s2 % .s; at this stage, there will be a rule to combine 

s, % E and s2 2 E into s, 11 s7 ‘y14 > E. ({q, , q2} is now considered as one 

(composed) action.) 

Since the only way to produce s, 1) s2 % E is by combining the steps s, % E and 

s2 % E, it should hold that Vs: 3q : s % E even if s is a nonterminating statement. 

In order to deal with this last case we even include transitions s 4 E where q is 

an injinite sequence of actions. Such infinite behaviour arises in particular when 

recursion is present in s. To handle this situation we have added a special action 

“e” to the action set and an axiom x5 E to the transition system. This allows us 

to terminate a (recursive) procedure prematurely. If we now derive x% E for 

n-1,2,3... by terminating each time in a later stage, we get a Cauchy sequence 

(%?)I0 and a Cauchy-rule in our transition system allows us to derive x % E, where 

q is the infinite sequence of actions (without “e”), obtained by taking lim, q,,. 

Example 3.2.2 should help the reader to understand this method. 

Let us first add the special symbol e to our domain. 

A,=AC{e}; P,, Qe, R, satisfy P, = pdQe); 

Qe = R, D Qe; & = A, fi 9,,(idk12(Qe)). 

We will define -+ E 2 x Qe x (ZG { E}) m a moment. Here E is a special symbol 

denoting the terminated statement. We will use s for real statements, i.e. elements 

of 9, and t for members of 9 V {E}. We use the notation s 4 t instead of (s, q, t) E +. 

In case s %. t with q .& R, we will always have t = E. So one can only do a composed 

step q, consisting of a sequence of actions, to the final statement E. 
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Axioms 

a % E, 

x5 E, 

Rules 

s&s’ ( E 

s,SI,s’,S 1 s’ 

s&s’ 1 E 

s+sr,s’ 1 E’ 

S+s&s’ ( E 

d(x)=gAgr,s 1 E 

x&slE ’ 

Elem 

Proc Term 

Seq Comp 

Int Par 

Choice 

Proc 

s -& s’ A s’ & E A r is finite 
,UE 3 Comp 

s A s’ A r is infinite 

S&E 
2 Inf-rule 

Vi: s % E A lim,q, = q 

s%E 
3 Cauchy-rule 

s,%E&%E 

s1 II s2 - 
(4l.YZf E ’ 

True Par 

Remark 3.2.1. Observe that we take a “hybrid” approach to concurrency here. We 

will have 6( s, II s2) = O( s, II s2 + s,;s,+s,;s,). We warn the reader that we have taken 

the true concurrency approach (no interleaving at all) in the examples of Section 

2.2 for simplicity. Without the presence of the Int Par rules we would obtain a true 

concurrent operational semantics in Section 3.3. If we also appropriately adapt the 

denotational semantics (by deleting the two left-merge parts of the semantical 

operator )I in Definition 3.4.1) then we can obtain B = 9 in a similar but simpler 

way as we will do here. It reduces the number of subcases in several proofs (in 

particular in the proof of Lemma 3.2.7). Only the proof of Lemma 3.2.5 is a bit 

more complicated without Int Par. 

Example 3.2.2. Let d(x) = a;(b)(x). 

(1) as E, Elem 
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(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

bllx-=+ E, 

(a,ib-I) 
x - E, 

Seq Comp (1) 

Proc (2) 

Elem 

Proc term 

True Par (4,5) 

Comp (3,6) 

True Par (4,7) 

Comp (3,S) 

X 
(a,(b,(a,{b,(a,(...})))}) E. 

Cauchy-rule (5,7,9, 11, . .) 

Now we are going to prove a series of five lemmas. The last lemma is essential 

for the proof of the equivalence of 6 and LB in Section 3.5. The first lemma is stating 

the so-called “image finiteness” property, that will be used to prove that 6 is 

well-defined in Section 3.3. 

Lemma 3.2.3. Vs: Vr: {s’l s &. s’} isjnite. 

Proof. Induction on the structure of s; first for guarded statements g. 

g = a. The only rules and axioms that can be used to produce Q I, t are Elem, 

Comp, the Inf-rule and the Cauchy-rule. In all cases t = E. So Vr : {s’l a G s’} = 0. 

g = g;s. Assume g;s 5 s’. The only rules that can be used are 

gJ+ s” g&E 

g;s _; s’I;s 
and p, 

g;s I-, s 

So {s’~g;s~s’}c_{s”;s~g~s”}u{s} is finite. 

g=g,lla. Assume gIlla h s’. The only rules that can be used are the following: 

SO {s’lg,IIg,G s’}C{s”IIg21g, & s”}u{g,~~~“~g~ I, s”}u{g,, g2} is finite. 

g = g, + g,. Assume g, + g, I, s’. The only rules that can be used are 

g, % s” 
and 

g, L s” 

g,+g,&s” g, +g, r, s”’ 

So {s’lg,+g, A. s’}c {s”Ig, J+ s”}u{s”jg2 G s”} is finite. 

s =x. Since Proc is the only rule that can be used to produce x L s’, we have 

{s’lx L s’} E {s”\ d(x) G s”} is finite since d(x) is guarded. 

The remaining cases are similar to previous ones. 0 

Lemma 3.2.4. Ifs - (r’y) E then 3s’: s I-t s’ A s’ 4 E. 
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Proof. Induction on the depth of the proof tree of s u E. The last rule used is either 

s 2 s’ A s’ % E A r is finite or Vi: s % E A lim, q, = (r, q) 
swE so_E 

If the first is used we are done. Else 3N : Vi > N : 4; = (r, q:) A lim, q: = q. By induction 

we have that Vi > IV: 3si : s A si A s, 3 E. Since {St 1 s 5~ s;} is, finite, there exists a 

subsequence (q:Jj and a statement s’ such that Vj : s Ls’/\s’2E.Nows’>Eand 

limj 41, = q so (Cauchy-rule) s’ 4 E. So we have s As’ A s’ 3 E. q 

Lemma 3.2.5. VsET:3qEQQ,:s$. E. 

Proof. First we show that Vs E 2 : 3a E A,: either s % E or 3s’with lower complexity 

than s : s % s’. Induction on structure of s: for example x 5 E and if s, % s’ with 

s’ lower complexity than s, then s,;s, % s’s2 with s’;s, lower complexity than s,;s,. 

With this we can prove the lemma immediately with induction on the structural 

complexity of s. 0 

Lemma 3.2.6. If 3( r;); : 3( t,); : s i ti and r, is $nite and lim, ri = r with r is injinite, 

then s + E. 

Proof. Either ti = E and then s L E or t, # E and then, by the previous lemma 

3qi : t, % E. If we define (q:); by ri in the first case and by (r,, qi) in the second case 

we have Vi : s % E and lim, qi = (since r is infinite) lim, r, = r so by the Cauchy-rule 

sLE. 0 

Lemma 3.2.7. Let r E R,. 

(a) a & E H r = a, 

(b) x%E@d(x)%Eorr=e, 

(c) s,;s, 5 E @ s, -& E A r is injnite, 

(d) s,+s,%E~ss,~Eors,~E, 
(e) s, 11 s2 G E ($ s, i E A r is injinite or s2 i E A r is injinite or 

gq,,q,EQ,: r={q,,q,}As,3 EAS,~ E. 

Proof. We only prove part (e), the other parts being easier. 

(e) If s1 & E A r is infinite then s,11s2 Ls, A r is infinite so sIIIs2 5 E by the 

Inf-rule. The case s2 & E A r is infinite is analogous. If s, % E A s2 2 E then 

s1 II% ‘q1’y2’ , E by True Par. 

(d) Induction on the depth of the proof tree for s,IIs2 & E. The last rule that is 

used to produce s, 11 s2 5 E is either 

s,%i~s~%E S, )I S2 5 s’ A r is infinite 
s, IIs {41342t , E Or s,IIsz h E 

or Vi: s,/s,% Er\lim,q,=r 

~111~2 L E 

If the first one is used then we are ready. 
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Assume now that the second one is used. The only way to derive s, IIs2 &. s’ is by 

Int Par so by s, & E or s2 2 E or s, & S or s2 L S. So we always have s, -& E or 

s2 L E, since r is infinite. 

The most difficult case is the case where the Cauchy-rule is used. So assume now 

that (qi)i is a sequence such that Vi: s,IIsz % E and limiqi = r. Now qiE R, or 

q, E R, x Qe, so there exists a subsequence (qr(i,)l such that either Vi: qfc,,~ R, or 

Vi: qrci, E R, x Qe. 

Case I. Vi: qr(,,~ R,. Rename qfcj, by r,. We have Vi: s,11s2 L E and lim; r, = r. 

By induction, we have for all i: 

s, 1; E A r, is infinite or 

s2 1; E A r, is infinite or 

3q,‘,qf: ri={q:,qf}ns,2E,s25E. 

So there exists a subsequence (r,(i)); such that 

Vi: s1 r”“‘-E A rgc,, is infinite or 

Vi: s2* E A r,,,, is infinite or 

Vi: 3qf, qf: rKcij = (411, qf} A s, 5 E A s2 2 E. 

Case Ia. Vi: s, % E and r,,,, is infinite. We have lim, rxci, = lim, r, = r, so by the 

Cauchy-rule s, G E A r is infinite. 

Case Ib. Vi: s2 $0 E and rgcij is infinite: analogous. 

Case Ic. Vi: 3qt, qf: rgcij = {q:, q:} A s, 5 E A s2 5 E. There exists a subsequence 

(rh(g(i))); such that (qL(l,)i is converging, say to ql, and (q&,l)i is converging, say 

to q2. By the Cauchy-rule, we have s, -$ E and s2 s E and r = lim, r, = limi rh(g(ilj = 

{q’, q?. 
Case II. Vi: qfc,, E R, x Qe. Say qrci, = (ri, 4,). Since lim,(ri, Si) = r we know that r 

is infinite and lim, r, = r. Ejy Lemma 3.2.4 we can deduce from s,I1sz (‘,.4,) E that 

Vi: 3~;: s,IIs,L Si (and $4 E). So for all i either at,: s, i ti or El&: s,L ti. NOW 

take a subsequence rgcij such that Vi: sl ~ t, or Vi: s2 ‘ri’) ---+ t,. Since rgcij is finite, 

r is infinite and limi rxcil = r, lemma 3.2.6 guarantees that s, L E or s2 A E. 0 

3.3. Operational semantics 

Let P, Q and R be the solution of the system of domain equations of the linear 

time/noninterleaved variety given in Section 2.2. From now on, we will no longer 

encounter the special action “e”. So if we write down s & s’, s & E or s % E then 

we mean that r E R and q E Q. The “e” is still present in our system, but hidden: 

in order to derive some transition, we sometimes have to use the “e” temporarily. 
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Definition 3.3.1 (Operational semantics). Let F : _Ce-+ F! We define the higher-order 

mapping @:(Z+ P)+ (Z- P) and B:=Y-+ P by 

Q(F)(s) = {(r, s)l3 s’: s 5 s’ with r E R is finite and q E F(s’)} 

u{r~R)sL E}, 

B = fixed-point of @. 

We have to show firstly that @( F)( s ) is closed and secondly that @ is a contraction. 

This last fact is straightforward, so we only prove the following. 

Proposition 3.3.2. @(F)(s) is closed. 

Proof. Because of the Cauchy rule, we have {r E R ( s G E} is closed. Assume now 

that lim,(r,, q,) = q with s L s, A ri E R A qi E F(si). Either limi ri = q or 3N: Vi> N: 

r, = rN and ( rN, lim, q,) = q. 

Case lim, r, = q. By Lemma 3.2.6 we have s “mjrX , E so q = limi r, E {r E R (s +. E}. 

Case Vi > N: ri = rN and (rN, lim, qi) = q. We have Vi > N: s 2 si. By image finite- 

ness there exists a subsequence (s~,)~ and an S such that Vj: si, = S. So Vj: qi, E F(S) 

so limi qi = lim, qi, E F(S) so q = (rN, lim, qi)E @(F)(s). 0 

3.4. Denotational semantics 

First we introduce-a number of semantical operators on P 

Definition 3.4.1. We define l , 11, k : Q x Q - P by 

Id, 
r-q= 

lo(r) = 00, 

{(I; q)l, otherwise, 

(r,4’)*4={(r,q)lqEq’*q}, 

41 II q2 = I{41 9 4211 u (Sl u_ 42) ” (42 II SA 

riLq= 
id, b(r) = co, 

lb-, 41, otherwise, 

(6 4’) IL 9 = ((5 9) I 4 E q’llql-. 

For OP = l , II, II wedefineop:PxP+Pby 

PI oPP2=u{q, oPq2I%EP,v,EP2h 

Notation: p1 Op, g ((4, , q2} 1 ql E p1 A q2 E p2}. Then we have p, )/ p2 = (p, 0 p2) u 

PI IL P2UPz IL PI 

Remark 3.4.2. The above definitions need some justification. First of all the operators 

are defined in terms of themselves. By the use of contracting higher-order operators 



142 J. W. de Bakker, J.H.A. Warmer-dam 

one can show that the above definitions make sense. Second we need to show that 

the result of p, opp2 is closed and nonempty. We will skip the proof here. For a 

comparable proof, see [lo] and [16]. 

Definition 3.4.3 (Denotational semantics). Let F : 2 + F? We define the higher order 

mapping ?P : (2 + P) - (2 -+ P) by 

P(F)(a) = {a>, 

~(F)(S,&) = T(F)(%) l F(Q), 

~‘(F)(s,IIs,) = fill FY(F)(%), 

F’(F)(s,+ s2) = T/(F)(%) u 9(F)(Q), 

q(F)(x) = v’(F)(d(x)), 

9 = fixed-point of !P. 

This way of defining a denotational semantics is extensively discussed in [24] 

and in [13]. The well-definedness can be shown by induction on the structure of 

the statement, first for guarded statements g and then for general statements s. In 

order to prove that q is a contraction, we need to have some properties of the 

semantical operators. 

Proposition 3.4.4. 

(1) &(P, l P;,P~*P;)~~~~{~~(P,,P~),~~~(P;,P~)}, 

(2) MPI II PII,Pr IL PiI s maxiMPI, p2L &&0~, ~91, 

(3) UPI IIP:,P*IIP~) s max{44pI, p2), MP;, ~21, 

(4) dp(p,O~II,pzO~;)~max{~dp(p,,pz),~d,(p;,p:)}. 

We want to ask for special attention for the $ in the fourth clause of this proposition. 

These factors are caused by the id,,, in the domain equations. 

3.5. Operational semantics = denotational semantics 

First we shall introduce an intermediate semantics 4 and prove that 4 = 0. Next 

we shall give the proof of the equivalence of 0 and 9. 

Definition 3.51 (Intermediate semantics). 9(s) = {q E Q 1 s % E}. 

Lemma 3.5.2. Vs E 9: 9(s) # 0. 

We leave the verification of this lemma to the reader. For a comparable proof, 

see [16]. 
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Lemma 3.5.3. 4 = 0. 

Proof 

9(s) = {q E Ql.4 E} 

={rERIs~E}“{(r,q)ERxQls-E} 

={rERIs~E}u{(r,q)p ‘: s sLs’,rER is finite, s’&E and qEQ} 

={r~R~s~E}u{(r,q)~3s’:s~s’,r~R is finite and qE9(s’)} 

= @(-a)(s). 

So Q(9) = 4. Since also Q(6) = 6 and @ is a contraction, we have 9 = 0’. 0 

The next lemma almost says that Q(9) = 9, which would be sufficient to prove 

6 = 9 immediately. 

Lemma 3.5.4. 

(1) @(9n)(a) = 9(a), 

(2) @(~h)(s,;sJ = @(pa) l 9a(s*), 

(3) @(~a)(s,Ils*) = (@(Ed) IL I) u (@(~d)(sd IL pa) u (Q(s,)QQ(s,)), 

(4) @(~a)(s,+sJ = Q(~)(s,) u @(~a)(sJ, 

(5) @(9a)(x) = @(~a)(d(x)). 

Proof. In this proof we indicate the use of Lemma 3.2.7 by a mark * on the “=” 

sign: “t “. 

(1) @(~d)(a)={(r, 4)l3 s’: a & s’, r E R is finite and q E 9(s’)} 

u{rE RluA E} 

t {a} = 9(u). 

(2) @(~a)(~~;4 = {(r, s)l3 s’: s,;s, 5 s’, r E R is finite and q E 9(s’)} 

u{rE Rls,;s,~ E} 

~{(r, q)lils’:s,~ s’, rE R is finite and qE 9(s’; sz)} 

u {(r, q) I s1 J+ E, r E R is finite and q E 9(sz)} 
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u {r E R 1 s, -!i E and r is infinite} 

={(r, q)13s’:s,A s’, TE R is finite and 

3q, E Bd(s’) : 3q* E 9a(%) : q E 91 l 421 

u{(r, q)/s, 1, E, TE R is finite and qc 9(sz)} 

u {r E R 1 s, & E and r is infinite} 

=U{(T,q,)*q*13s’:s,-L,S’, r E R is finite, q1 E 9(s’) and 

q2 E ~(41 

uU{r.qIs,1,E,rERandqE~(s,)} 

= U isI l q21ql E @(Ed) and q2E ga(sd) 
= @(~a)(%) l 9a(s2). 

(3) @(9)(.4 Il. 9(s2) = U Is, II q21 4, E @(gd)(sd and q2E ~(41 

=U{(r,q) k q213s:s,Ass, rE R is finite, 

q E B(s) and q2E 9(s2)l 

ui._._JCrll. q21slAE,rER and q2cs(S2)} 

={(r, tj)13s:s,A s, re R is finite and 

3q~~a(s):3SzE~d(S,):q~qIIq,} 

u{(r, q2)Is,A E, rE R is finite and q2E 9(s2)> 

u {r E R I s, 1, E, r E R is infinite) 

={r,q)(3s:s,As,reR isfiniteand 

4 E 9a(s)ll9d(s2)) 

u {(r, q2) / s, A E, r E R is finite and q2 E 9(s,)} 

u{rE Rl.s,A E, rE R is infinite} 

and 

a(s,)oa(s,) = 4(S,)O4(S,) 

= {is,, q2) Is, 2 E, ~2 2 6 41, 42 E 01 
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SO 

~(~)(s,IIsz)={(r,q)13s’:s,Ils,1,,’,r~R is finite and qEB(s’)I 

u{r~ R(s,II& E) 

t{(r,q)l3s’:s,~s’,rER isfiniteand 

q E 9(s’(ls,)} u symmetric case 

u {(r, q) 1 s, L E, r E R is finite and 

q E 9 ( sz)} u symmetric case 

u {r E R 1 s, 1, E and r is infinite} u symmetric case 

= (Q(S)(%) IL B(sz))u (@(9a)(s,) IL 9a(s,))u (f7’(s,)aQ(s,)). 

(4) @w(~,+~2)=~(w~l3 s’: s, + s2 A s’, rE R is finite and q E 9(s))} 

s {(r, q)(3s’: s, -G s’, r E R is finite and 

q E 9(s’)} u symmetric case 

u {r E R 1 s2 A E} u symmetric case 

= @(B)(s,) CJ @(9a)(s2). 

(5) @(g)(x) = {(r, 4) 13 s’ : x A s’, r E R is finite and q E 9( s’)} 

u{rE RlxA E} 

S{(r, q))3s’:d( ) x A s’, r E R is finite and q E 9(s’)} 

u{reRld(x)A E) 

= @(9)(d(x)). 0 

Because of the occurrences of 0, instead of 9, at two places of the right-hand 

side of the previous lemma, clause (3), we are not able to prove d( @(SD), 9) = 0 

immediately, but instead of this we are able to prove d( @( 9), 9) G $I( 9), 0) which 

turns out to be sufficient. 
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Lemma 3.55 d(@(9), 9)<$(9,0). 

Proof. We show with induction on the structure of s, (first g) that d(@(g)(s), 

9(s)) < $d( 9, 0’). The only cases that we prove here are g = g;s and g = g, IIg,; the 

other cases are easier or similar. 

g = g;s: d(@(9)(g;s), 9(g;s)) = d(@(B)(g) .9(s), 9(g) .9(s)) 

smax{d(@(s)(g), g(g)), @(s(s), B(s))) 

s (by induction)$f(9,6). 

g=g,llg*: d(@(~)klll&), ~(&lk*)) 

= d(@(g)(g,) IL 9(h) u @(9)(&) IL B(g,)u ~(&)Qf%t*), 

I II 9(&)U Sk,) II Wg,)u Gus) 

~max{d(Qi(~)(g,), Wgd), d(@(g(gJ, s(gJ), 

~~(~(g,), 9(g,)), ;d(%,), ~(&))I 

G id (i&6) by induction. Cl 

Theorem 3.5.6. 6 = 9. 

Proof. 

d(O, 9) s d(@(O’), 9) G max{d(@(Q), @(ga)), d(@(ga), 9)) 

Gmax{id(O, 9),4d(O, 9)}=td(O, 9), 

so 6=9. 0 

4. Conclusions 

The language considered in Section 3 does not include a notion of synchronization. 

The noninterleaved domains are not sufficient to handle synchronization. To demon- 

strate this, look at the following statement. 

s= (a;c)ll(b;(~lld)). 

We assume here that a, b and d are internal actions and that c and F are commun- 

ication actions, able to synchronize with each other. The process denoting this 

statement is shown in Fig. 6 (in pomset notation) where r denotes successful 

synchronization. 

The pomset is called the N-pomset in the literature (cf. for example [IS]). The 

problem is that such a structure is not present in our domain. In fact we conjecture 

that it is not possible to define an appropriate domain by means of domain equations 
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Fig. 6. 

built from given sets (without any structure) and the usual constructors (described 

in the introduction and in Section 2.1). Therefore, we propose to combine the 

domain equation approach and the pomset approach. Let ?@!%II[A, P] denote the 

set of pomsets where the labels at level 1 come from the set A and the remaining 

labels are elements of P. Then the following system of domain equations might 

be appropriate to handle noninterleaved branching time concurrency with 

synchronization. 

Future research is needed to investigate this domain. 

The linear time variant P = g,,(Q), Q = CRLll[A, Q] is isomorphic to P = F’,,,(Q), 
Q = 9OJll[A], where C!JTUl[A] denotes the set of all pomsets with labels in A. This 

domain was used in [16]. 
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