54 research outputs found

    Self-reproduction in cellular automata

    Full text link
    Self-reproduction in cellular automata is discussed with reference to the models of von Neumann and Codd. The conclusion is drawn that although the capacity for universal construction is a sufficient condition for self-reproduction, it is not a necessary condition. Slightly more "liberal" criteria for what constitutes genuine self-reproduction are introduced, and a simple self-reproducing structure is exhibited which satisfies these new criteria. This structure achieves its simplicity by storing its description in a dynamic "loop", rather than on a static "tape".Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24968/1/0000395.pd

    Studying artificial life with cellular automata

    Full text link
    Biochemistry studies the way in which life emerges from the interaction of inanimate molecules. In this paper we look into the possibility that life could emerge from the interaction of inanimate artificial molecules. Cellular automata provide us with the logical universes within which we can embed artificial molecules in the form of propagating, virtual automata. We suggest that since virtual automata have the computational capacity to fill many of the functional roles played by the primary biomolecules, there is a strong possibility that the `molecular logic' of life can be embedded within cellular automata and that, therefore, artificial life is a distinct possibility within these highly parallel computer structures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26022/1/0000093.pd

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    3rd Artificial Life Workshop

    No full text

    1st Artificial Life Workshop

    No full text
    • 

    corecore