19 research outputs found

    AAV-mediated expression of wild-type and ALS-linked mutant VAPB selectively triggers death of motoneurons through a Ca2+-dependent ER-associated pathway

    Get PDF
    A dominant mutation in the gene coding for the vesicle-associated membrane protein-associated protein B (VAPB) was associated with amyotrophic lateral sclerosis, a fatal paralytic disorder characterized by the selective loss of motoneurons in the brain and spinal cord. Adeno-associated viral vectors that we show to transduce up to 90% of motoneurons in vitro were used to model VAPB-associated neurodegenerative process. We observed that Adeno-associated viral-mediated over-expression of both wild-type and mutated form of human VAPB selectively induces death of primary motoneurons, albeit with different kinetics. We provide evidence that ER stress and impaired homeostatic regulation of calcium (Ca2+) are implicated in the death process. Finally, we found that completion of the motoneuron death program triggered by the over-expression of wild-type and mutant VAPB implicates calpains, caspase 12 and 3. Our viral-based in vitro model, which recapitulates the selective vulnerability of motoneurons to the presence of mutant VAPB and also to VAPB gene dosage effect, identifies aberrant Ca2+ signals and ER-derived death pathways as important events in the motoneuron degenerative process

    Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt axonal transport of mitochondria

    Get PDF
    A proline-to-serine substitution at position 56 in the gene encoding vesicle-associated membrane protein-associated protein B (VAPB; VAPBP56S) causes some dominantly inherited familial forms of motor neuron disease, including amyotrophic lateral sclerosis (ALS) type-8. Here, we show that expression of ALS mutant VAPBP56S but not wild-type VAPB in neurons selectively disrupts anterograde axonal transport of mitochondria. VAPBP56S-induced disruption of mitochondrial transport involved reductions in the frequency, velocity and persistence of anterograde mitochondrial movement. Anterograde axonal transport of mitochondria is mediated by the microtubule-based molecular motor kinesin-1. Attachment of kinesin-1 to mitochondria involves the outer mitochondrial membrane protein mitochondrial Rho GTPase-1 (Miro1) which acts as a sensor for cytosolic calcium levels ([Ca2+]c); elevated [Ca2+]c disrupts mitochondrial transport via an effect on Miro1. To gain insight into the mechanisms underlying the VAPBP56S effect on mitochondrial transport, we monitored [Ca2+]c levels in VAPBP56S-expressing neurons. Expression of VAPBP56S but not VAPB increased resting [Ca2+]c and this was associated with a reduction in the amounts of tubulin but not kinesin-1 that were associated with Miro1. Moreover, expression of a Ca2+ insensitive mutant of Miro1 rescued defective mitochondrial axonal transport and restored the amounts of tubulin associated with the Miro1/kinesin-1 complex to normal in VAPBP56S-expressing cells. Our results suggest that ALS mutant VAPBP56S perturbs anterograde mitochondrial axonal transport by disrupting Ca2+ homeostasis and effecting the Miro1/kinesin-1 interaction with tubulin

    FYVE-Dependent Endosomal Targeting of an Arrestin-Related Protein in Amoeba

    Get PDF
    International audienceBACKGROUND: Visual and β-arrestins are scaffolding proteins involved in the regulation of receptor-dependent intracellular signaling and their trafficking. The arrestin superfamilly includes several arrestin domain-containing proteins and the structurally related protein Vps26. In Dictyostelium discoideum, the arrestin-domain containing proteins form a family of six members, namely AdcA to -F. In contrast to canonical arrestins, Dictyostelium Adc proteins show a more complex architecture, as they possess, in addition to the arrestin core, other domains, such as C2, FYVE, LIM, MIT and SAM, which potentially mediate selective interactions with either lipids or proteins. METHODOLOGY AND PRINCIPAL FINDINGS: A detailed analysis of AdcA has been performed. AdcA extends on both sides of the arrestin core, in particular by a FYVE domain which mediates selective interactions with PI(3)P, as disclosed by intrinsic fluorescence measurements and lipid overlay assays. Localization studies showed an enrichment of tagged- and endogenous AdcA on the rim of early macropinosomes and phagosomes. This vesicular distribution relies on a functional FYVE domain. Our data also show that the arrestin core binds the ADP-ribosylation factor ArfA, the unique amoebal Arf member, in its GDP-bound conformation. SIGNIFICANCE: This work describes one of the 6 arrestin domain-containing proteins of Dictyostelium, a novel and atypical member of the arrestin clan. It provides the basis for a better understanding of arrestin-related protein involvement in trafficking processes and for further studies on the expanding roles of arrestins in eukaryotes

    Analysis of the key elements of FFAT-like motifs identifies new proteins that potentially bind VAP on the ER, including two AKAPs and FAPP2.

    Get PDF
    Two phenylalanines (FF) in an acidic tract (FFAT)-motifs were originally described as having seven elements: an acidic flanking region followed by 6 residues (EFFDA-E). Such motifs are found in several lipid transfer protein (LTP) families, and they interact with a protein on the cytosolic face of the ER called vesicle-associated membrane protein-associated protein (VAP). Mutation of which causes ER stress and motor neuron disease, making it important to determine which proteins bind VAP. Among other proteins that bind VAP, some contain FFAT-like motifs that are missing one or more of the seven elements. Defining how much variation is tolerated in FFAT-like motifs is a preliminary step prior to the identification of the full range of VAP interactors

    Including homeless families and children in the social protection system: a brief review of international experience and an analysis of data on the Philippine pilot programme

    No full text
    The Pantawid Pamilyang Pilipino Programme (4Ps) is one of the projects subsumed within the Philippine social protection agenda. The 4Ps, under the management of the Department of Social and Welfare and Development (DSWD), has covered over 7 million children belonging to approximately 3 million poor families with homes from the period February 2008 to May 2012. In an effort to extend social protection services to the homeless, the DSWD launched the Modified Conditional Cash Transfer for Homeless (MCCT-HSF) programme in the second half of 2012. The MCCT-HSF, viewed as an extension of the 4Ps, intends to provide immediate relief, support and services to homeless families. It is also designed as a mechanism through which homeless families can transition into the 4Ps. This study serves as a review of social protection programmes that are similar to the MCCT-HSF and as a preliminary analysis of the data gleaned from the pilot implementation of the MCCT-HSF. A review of the social protection programmes for the homeless of other countries suggests that the success of these kinds of programmes is contingent on the development of accurate integrated targeting, monitoring and delivery systems. Moreover, it has been observed that the construction of cost-effective transient housing facilities or temporary shelters, and the provision of personalized psychosocial counselling services are instrumental to the success of homeless protection programmes for the homeless. The data from the MCCT-HSF pilot implementation indicate that homeless families found in Metro Manila originate from poor regions that are close to the National Capital Region. The data set also reveals that most of the homeless included in the pilot implementation attained only an elementary-level education. A considerable proportion of the homeless is either unemployed or employed in the informal sector

    Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice

    No full text
    Induction of phase 2 enzymes, which neutralize reactive electrophiles and act as indirect antioxidants, appears to be an effective means for achieving protection against a variety of carcinogens in animals and humans. Transcriptional control of the expression of these enzymes is mediated, at least in part, through the antioxidant response element (ARE) found in the regulatory regions of their genes. The transcription factor Nrf2, which binds to the ARE, appears to be essential for the induction of prototypical phase 2 enzymes such as glutathione S-transferases (GSTs) and NAD(P)H:quinone oxidoreductase (NQO1). Constitutive hepatic and gastric activities of GST and NQO1 were reduced by 50–80% in nrf2-deficient mice compared with wild-type mice. Moreover, the 2- to 5-fold induction of these enzymes in wild-type mice by the chemoprotective agent oltipraz, which is currently in clinical trials, was almost completely abrogated in the nrf2-deficient mice. In parallel with the enzymatic changes, nrf2-deficient mice had a significantly higher burden of gastric neoplasia after treatment with benzo[a]pyrene than did wild-type mice. Oltipraz significantly reduced multiplicity of gastric neoplasia in wild-type mice by 55%, but had no effect on tumor burden in nrf2-deficient mice. Thus, Nrf2 plays a central role in the regulation of constitutive and inducible expression of phase 2 enzymes in vivo and dramatically influences susceptibility to carcinogenesis. Moreover, the total loss of anticarcinogenic efficacy of oltipraz in the nrf2-disrupted mice highlights the prime importance of elevated phase 2 gene expression in chemoprotection by this and similar enzyme inducers
    corecore