68 research outputs found

    Extending the Strategy Based Risk Model Using the Delphi Method: An Application to the Validation Process for Research and Developmental (R&D) Satellites

    Get PDF
    The validation between a research and developmental satellite and its ground system is critical to ensuring the success on-orbit. However, the exact process for completing validation is not documented, frequently underfunded, and accomplished ad hoc. This leads to debate regarding maintenance of budget and schedule, while ensuring on-orbit success. This thesis examines readiness and on-orbit activities within the U.S. Air Force Space Development and Test Wing\u27s Research Development Test and Evaluation Support Complex. Combining historical data with the consultation of subject matter experts, a validation process was defined. Risks associated with this process were then analyzed using the Strategy Based Risk Model, and were evaluated based on the probability of occurrence and severity of impact. The validation process and associated costs were validated using the Delphi Method. Next, we transformed the results into a simulation that generates distributions of possible costs and risk outcomes. Finally we applied the simulation to a program, and distributed it to program managers for feedback. The simulation will be distributed to program offices to support tailoring a validation plan relative to their budget. The simulation will give decision makers greater fidelity into the expected risks and costs associated with the selected validation process

    On the Reliability of Meta-Analytic Reviews

    Full text link
    The article addresses the issue of intercoder reliability in meta-analyses. The current practice of reporting a single, mean intercoder agreement score in meta-analytic research leads to systematic bias and overestimates the true reliability. An alternative approach is recommended in which average intercoder agreement scores or other reliability statistics are calculated within clusters of coded variables. These clusters form a hierarchy in which the correctness of coding decisions at a given level of the hierarchy is contingent on decisions made at higher levels. Two separate studies of intercoder agreement in meta-analysis are presented to assess the validity of the model.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67840/2/10.1177_0193841X9301700303.pd

    North American Climate in CMIP5 Experiments: Part III: Assessment of Twenty-First-Century Projections

    Get PDF
    In part III of a three-part study on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, the authors examine projections of twenty-first-century climate in the representative concentration pathway 8.5 (RCP8.5) emission experiments. This paper summarizes and synthesizes results from several coordinated studies by the authors. Aspects of North American climate change that are examined include changes in continental-scale temperature and the hydrologic cycle, extremes events, and storm tracks, as well as regional manifestations of these climate variables. The authors also examine changes in the eastern North Pacific and North Atlantic tropical cyclone activity and North American intraseasonal to decadal variability, including changes in teleconnections to other regions of the globe. Projected changes are generally consistent with those previously published for CMIP3, although CMIP5 model projections differ importantly from those of CMIP3 in some aspects, including CMIP5 model agreement on increased central California precipitation. The paper also highlights uncertainties and limitations based on current results as priorities for further research. Although many projected changes in North American climate are consistent across CMIP5 models, substantial intermodel disagreement exists in other aspects. Areas of disagreement include projections of changes in snow water equivalent on a regional basis, summer Arctic sea ice extent, the magnitude and sign of regional precipitation changes, extreme heat events across the northern United States, and Atlantic and east Pacific tropical cyclone activity

    The impact of ENSO on Southern African rainfall in CMIP5 ocean atmosphere coupled climate models

    Get PDF
    We study the ability of 24 ocean atmosphere global coupled models from the Coupled Model Intercomparison Project 5 (CMIP5) to reproduce the teleconnections between El Niño Southern Oscillation (ENSO) and Southern African rainfall in austral summer using historical forced simulations, with a focus on the atmospheric dynamic associated with El Niño. Overestimations of summer rainfall occur over Southern Africa in all CMIP5 models. Abnormal westward extensions of ENSO patterns are a common feature of all CMIP5 models, while the warming of the Indian Ocean that happens during El Niño is not correctly reproduced. This could impact the teleconnection between ENSO and Southern African rainfall which is represented with mixed success in CMIP5 models. Large-scale anomalies of suppressed deep-convection over the tropical maritime continent and enhanced convection from the central to eastern Pacific are correctly simulated. However, regional biases occur above Africa and the Indian Ocean, particularly in the position of the deep convection anomalies associated with El Niño, which can lead to the wrong sign in rainfall anomalies in the northwest part of South Africa. From the near-surface to mid-troposphere, CMIP5 models underestimate the observed anomalous pattern of pressure occurring over Southern Africa that leads to dry conditions during El Niño years

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing

    Get PDF
    This is the final version of the article. Available from AGU via the DOI in this record.El Niño and Southern Oscillation (ENSO) is the most prominent year-to-year climate fluctuation on Earth, alternating between anomalously warm (El Niño) and cold (La Niña) sea surface temperature (SST) conditions in the tropical Pacific. ENSO exerts its impacts on remote regions of the globe through atmospheric teleconnections, affecting extreme weather events worldwide. However, these teleconnections are inherently nonlinear and sensitive to ENSO SST anomaly patterns and amplitudes. In addition, teleconnections are modulated by variability in the oceanic and atmopsheric mean state outside the tropics and by land and sea ice extent. The character of ENSO as well as the ocean mean state have changed since the 1990s, which might be due to either natural variability or anthropogenic forcing, or their combined influences. This has resulted in changes in ENSO atmospheric teleconnections in terms of precipitation and temperature in various parts of the globe. In addition, changes in ENSO teleconnection patterns have affected their predictability and the statistics of extreme events. However, the short observational record does not allow us to clearly distinguish which changes are robust and which are not. Climate models suggest that ENSO teleconnections will change because the mean atmospheric circulation will change due to anthropogenic forcing in the 21st century, which is independent of whether ENSO properties change or not. However, future ENSO teleconnection changes do not currently show strong intermodel agreement from region to region, highlighting the importance of identifying factors that affect uncertainty in future model projections.S. W. Y. is supported by the KoreaMeteorological Administration Researchand Development Program under grant KMIPA2015-2112. Wenju Cai is supported by Earth System and Climate Change Hub of the Australia National Environmental Science Programme, and Centre for Southern Hemisphere Oceans Research, an international collaboration between CSIRO and Qingdao National Laboratory for Marine Sciences and Technology. B. Dewitte acknowledges supports from FONDECYT(1151185) and from LEFE-GMMC. Dietmar Dommenget is supported by ARC Centre of Excellence for Climate System Science (CE110001028)
    corecore