43 research outputs found

    The Active for Life Year 5 (AFLY5) school based cluster randomised controlled trial: study protocol for a randomized controlled trial

    Get PDF
    Background: Low levels of physical activity, high levels of sedentary behaviour and low levels of fruit and vegetable consumption are common in children and are associated with adverse health outcomes. The aim of this paper is to describe the protocol for a cluster randomised controlled trial (RCT) designed to evaluate a school-based intervention that aims to increase levels of physical activity, decrease sedentary behaviour and increase consumption of fruit and vegetables in school children. Methods/design: The Active for Life Year 5 (AFLY5) study is a school-based, cluster RCT that targets school children in Year 5 (age 9-10 years). All state junior/primary schools in the area covered by Bristol City and North Somerset Council are invited to participate; special schools are excluded. Eligible schools are randomised to one of two arms: intervention arm (receive the intervention 2011-2012) and control arm (receive the intervention after the final follow-up assessment, 2013-2014). The primary outcomes of the trial are levels of accelerometer assessed physical activity and sedentary behaviour and questionnaire assessed fruit and vegetable consumption. A number of secondary outcomes will also be measured, including body mass index, waist circumference and overweight/obesity. Outcomes will be assessed at baseline (prior to intervention when the children are in Year 4), at the end of intervention ‘immediate follow-up’ and ‘12 months long-term’ follow-up. We will use random effects linear and logistic regression models to compare outcomes by randomised arm. The economic evaluation from a societal perspective will take the form of a cost consequence analysis. Data from focus groups and interviews with pupils, parents and teachers will be used to increase understanding of how the intervention has any effect and is integrated into normal school activity. Discussion: The results of the trial will provide information about the public health effectiveness of a school-based intervention aimed at improving levels of physical activity, sedentary behaviour and diet in children.Debbie A Lawlor, Russell Jago, Sian M Noble, Catherine R Chittleborough, Rona Campbell, Julie Mytton, Laura D Howe, Tim J Peters and Ruth R Kippin

    Identification of PLCL1 Gene for Hip Bone Size Variation in Females in a Genome-Wide Association Study

    Get PDF
    Osteoporosis, the most prevalent metabolic bone disease among older people, increases risk for low trauma hip fractures (HF) that are associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of the key measurable risk factors for HF. Although hip BS is highly genetically determined, genetic factors underlying the trait are still poorly defined. Here, we performed the first genome-wide association study (GWAS) of hip BS interrogating ∌380,000 SNPs on the Affymetrix platform in 1,000 homogeneous unrelated Caucasian subjects, including 501 females and 499 males. We identified a gene, PLCL1 (phospholipase c-like 1), that had four SNPs associated with hip BS at, or approaching, a genome-wide significance level in our female subjects; the most significant SNP, rs7595412, achieved a p value of 3.72×10−7. The gene's importance to hip BS was replicated using the Illumina genotyping platform in an independent UK cohort containing 1,216 Caucasian females. Two SNPs of the PLCL1 gene, rs892515 and rs9789480, surrounded by the four SNPs identified in our GWAS, achieved p values of 8.62×10−3 and 2.44×10−3, respectively, for association with hip BS. Imputation analyses on our GWAS and the UK samples further confirmed the replication signals; eight SNPs of the gene achieved combined imputed p values<10−5 in the two samples. The PLCL1 gene's relevance to HF was also observed in a Chinese sample containing 403 females, including 266 with HF and 177 control subjects. A SNP of the PLCL1 gene, rs3771362 that is only ∌0.6 kb apart from the most significant SNP detected in our GWAS (rs7595412), achieved a p value of 7.66×10−3 (odds ratio = 0.26) for association with HF. Additional biological support for the role of PLCL1 in BS comes from previous demonstrations that the PLCL1 protein inhibits IP3 (inositol 1,4,5-trisphosphate)-mediated calcium signaling, an important pathway regulating mechanical sensing of bone cells. Our findings suggest that PLCL1 is a novel gene associated with variation in hip BS, and provide new insights into the pathogenesis of HF

    Bayesian methods for meta-analysis of causal relationships estimated using genetic instrumental variables.

    Get PDF
    Genetic markers can be used as instrumental variables, in an analogous way to randomization in a clinical trial, to estimate the causal relationship between a phenotype and an outcome variable. Our purpose is to extend the existing methods for such Mendelian randomization studies to the context of multiple genetic markers measured in multiple studies, based on the analysis of individual participant data. First, for a single genetic marker in one study, we show that the usual ratio of coefficients approach can be reformulated as a regression with heterogeneous error in the explanatory variable. This can be implemented using a Bayesian approach, which is next extended to include multiple genetic markers. We then propose a hierarchical model for undertaking a meta-analysis of multiple studies, in which it is not necessary that the same genetic markers are measured in each study. This provides an overall estimate of the causal relationship between the phenotype and the outcome, and an assessment of its heterogeneity across studies. As an example, we estimate the causal relationship of blood concentrations of C-reactive protein on fibrinogen levels using data from 11 studies. These methods provide a flexible framework for efficient estimation of causal relationships derived from multiple studies. Issues discussed include weak instrument bias, analysis of binary outcome data such as disease risk, missing genetic data, and the use of haplotypes.This is the accepted manuscript version. The final published version is available from Wiley at http://onlinelibrary.wiley.com/doi/10.1002/sim.3843/abstract;jsessionid=D83E836311AE8220A26CB4E7BFBF3DF1.f01t01

    Adult height, coronary heart disease and stroke: a multi-locus Mendelian randomization meta-analysis

    Get PDF
    BACKGROUND: We investigated causal effect of completed growth, measured by adult height, on coronary heart disease (CHD), stroke and cardiovascular traits, using instrumental variable (IV) Mendelian randomization meta-analysis. METHODS: We developed an allele score based on 69 single nucleotide polymorphisms (SNPs) associated with adult height, identified by the IBCCardioChip, and used it for IV analysis against cardiovascular risk factors and events in 21 studies and 60 028 participants. IV analysis on CHD was supplemented by summary data from 180 height-SNPs from the GIANT consortium and their corresponding CHD estimates derived from CARDIoGRAMplusC4D. RESULTS: IV estimates from IBCCardioChip and GIANT-CARDIoGRAMplusC4D showed that a 6.5-cm increase in height reduced the odds of CHD by 10% [odds ratios 0.90; 95% confidence intervals (CIs): 0.78 to 1.03 and 0.85 to 0.95, respectively],which agrees with the estimate from the Emerging Risk Factors Collaboration (hazard ratio 0.93; 95% CI: 0.91 to 0.94). IV analysis revealed no association with stroke (odds ratio 0.97; 95% CI: 0.79 to 1.19). IV analysis showed that a 6.5-cm increase in height resulted in lower levels of body mass index (P < 0.001), triglycerides (P < 0.001), non high-density (non-HDL) cholesterol (P < 0.001), C-reactive protein (P = 0.042), and systolic blood pressure (P = 0.064) and higher levels of forced expiratory volume in 1 s and forced vital capacity (P < 0.001 for both). CONCLUSIONS: Taller individuals have a lower risk of CHD with potential explanations being that taller people have a better lung function and lower levels of body mass index, cholesterol and blood pressure

    HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials.

    Get PDF
    BACKGROUND: Statins increase the risk of new-onset type 2 diabetes mellitus. We aimed to assess whether this increase in risk is a consequence of inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the intended drug target. METHODS: We used single nucleotide polymorphisms in the HMGCR gene, rs17238484 (for the main analysis) and rs12916 (for a subsidiary analysis) as proxies for HMGCR inhibition by statins. We examined associations of these variants with plasma lipid, glucose, and insulin concentrations; bodyweight; waist circumference; and prevalent and incident type 2 diabetes. Study-specific effect estimates per copy of each LDL-lowering allele were pooled by meta-analysis. These findings were compared with a meta-analysis of new-onset type 2 diabetes and bodyweight change data from randomised trials of statin drugs. The effects of statins in each randomised trial were assessed using meta-analysis. FINDINGS: Data were available for up to 223 463 individuals from 43 genetic studies. Each additional rs17238484-G allele was associated with a mean 0·06 mmol/L (95% CI 0·05-0·07) lower LDL cholesterol and higher body weight (0·30 kg, 0·18-0·43), waist circumference (0·32 cm, 0·16-0·47), plasma insulin concentration (1·62%, 0·53-2·72), and plasma glucose concentration (0·23%, 0·02-0·44). The rs12916 SNP had similar effects on LDL cholesterol, bodyweight, and waist circumference. The rs17238484-G allele seemed to be associated with higher risk of type 2 diabetes (odds ratio [OR] per allele 1·02, 95% CI 1·00-1·05); the rs12916-T allele association was consistent (1·06, 1·03-1·09). In 129 170 individuals in randomised trials, statins lowered LDL cholesterol by 0·92 mmol/L (95% CI 0·18-1·67) at 1-year of follow-up, increased bodyweight by 0·24 kg (95% CI 0·10-0·38 in all trials; 0·33 kg, 95% CI 0·24-0·42 in placebo or standard care controlled trials and -0·15 kg, 95% CI -0·39 to 0·08 in intensive-dose vs moderate-dose trials) at a mean of 4·2 years (range 1·9-6·7) of follow-up, and increased the odds of new-onset type 2 diabetes (OR 1·12, 95% CI 1·06-1·18 in all trials; 1·11, 95% CI 1·03-1·20 in placebo or standard care controlled trials and 1·12, 95% CI 1·04-1·22 in intensive-dose vs moderate dose trials). INTERPRETATION: The increased risk of type 2 diabetes noted with statins is at least partially explained by HMGCR inhibition. FUNDING: The funding sources are cited at the end of the paper

    Lipids, obesity and gallbladder disease in women: insights from genetic studies using the cardiovascular gene-centric 50K SNP array

    Get PDF
    Gallbladder disease (GBD) has an overall prevalence of 10-40% depending on factors such as age, gender, population, obesity and diabetes, and represents a major economic burden. Although gallstones are composed of cholesterol by-products and are associated with obesity, presumed causal pathways remain unproven, although BMI reduction is typically recommended. We performed genetic studies to discover candidate genes and define pathways involved in GBD. We genotyped 15,241 women of European ancestry from three cohorts, including 3216 with GBD, using the Human cardiovascular disease (HumanCVD) BeadChip containing up to ~ 53,000 single-nucleotide polymorphisms (SNPs). Effect sizes with P-values for development of GBD were generated. We identify two new loci associated with GBD, GCKR rs1260326:T>C (P = 5.88 × 10(-7), ß = -0.146) and TTC39B rs686030:C>A (P = 6.95 x 10(-7), ß = 0.271) and detect four independent SNP effects in ABCG8 rs4953023:G>A (P=7.41 × 10(-47), ß = 0.734), ABCG8 rs4299376:G(>)T (P = 2.40 × 10(-18), ß = 0.278), ABCG5 rs6544718:T>C (P = 2.08 × 10(-14), ß = 0.044) and ABCG5 rs6720173:G>C (P = 3.81 × 10(-12), ß(=)0.262) in conditional analyses taking genotypes of rs4953023:G>A as a covariate. We also delineate the risk effects among many genotypes known to influence lipids. These data, from the largest GBD genetic study to date, show that specific, mainly hepatocyte-centred, components of lipid metabolism are important to GBD risk in women. We discuss the potential pharmaceutical implications of our findings

    Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data.

    Get PDF
    OBJECTIVE: To use the rs1229984 variant in the alcohol dehydrogenase 1B gene (ADH1B) as an instrument to investigate the causal role of alcohol in cardiovascular disease. DESIGN: Mendelian randomisation meta-analysis of 56 epidemiological studies. PARTICIPANTS: 261 991 individuals of European descent, including 20 259 coronary heart disease cases and 10 164 stroke events. Data were available on ADH1B rs1229984 variant, alcohol phenotypes, and cardiovascular biomarkers. MAIN OUTCOME MEASURES: Odds ratio for coronary heart disease and stroke associated with the ADH1B variant in all individuals and by categories of alcohol consumption. RESULTS: Carriers of the A-allele of ADH1B rs1229984 consumed 17.2% fewer units of alcohol per week (95% confidence interval 15.6% to 18.9%), had a lower prevalence of binge drinking (odds ratio 0.78 (95% CI 0.73 to 0.84)), and had higher abstention (odds ratio 1.27 (1.21 to 1.34)) than non-carriers. Rs1229984 A-allele carriers had lower systolic blood pressure (-0.88 (-1.19 to -0.56) mm Hg), interleukin-6 levels (-5.2% (-7.8 to -2.4%)), waist circumference (-0.3 (-0.6 to -0.1) cm), and body mass index (-0.17 (-0.24 to -0.10) kg/m(2)). Rs1229984 A-allele carriers had lower odds of coronary heart disease (odds ratio 0.90 (0.84 to 0.96)). The protective association of the ADH1B rs1229984 A-allele variant remained the same across all categories of alcohol consumption (P=0.83 for heterogeneity). Although no association of rs1229984 was identified with the combined subtypes of stroke, carriers of the A-allele had lower odds of ischaemic stroke (odds ratio 0.83 (0.72 to 0.95)). CONCLUSIONS: Individuals with a genetic variant associated with non-drinking and lower alcohol consumption had a more favourable cardiovascular profile and a reduced risk of coronary heart disease than those without the genetic variant. This suggests that reduction of alcohol consumption, even for light to moderate drinkers, is beneficial for cardiovascular health

    Mendelian randomization of blood lipids for coronary heart disease

    Get PDF
    Aims To investigate the causal role of high-density lipoprotein cholesterol (HDL-C) and triglycerides in coronary heart disease (CHD) using multiple instrumental variables for Mendelian randomization. Methods and results We developed weighted allele scores based on single nucleotide polymorphisms (SNPs) with established associations with HDL-C, triglycerides, and low-density lipoprotein cholesterol (LDL-C). For each trait, we constructed two scores. The first was unrestricted, including all independent SNPs associated with the lipid trait identified from a prior meta-analysis (threshold P < 2 × 10−6); and the second a restricted score, filtered to remove any SNPs also associated with either of the other two lipid traits at P ≀ 0.01. Mendelian randomization meta-analyses were conducted in 17 studies including 62,199 participants and 12,099 CHD events. Both the unrestricted and restricted allele scores for LDL-C (42 and 19 SNPs, respectively) associated with CHD. For HDL-C, the unrestricted allele score (48 SNPs) was associated with CHD (OR: 0.53; 95% CI: 0.40, 0.70), per 1 mmol/L higher HDL-C, but neither the restricted allele score (19 SNPs; OR: 0.91; 95% CI: 0.42, 1.98) nor the unrestricted HDL-C allele score adjusted for triglycerides, LDL-C, or statin use (OR: 0.81; 95% CI: 0.44, 1.46) showed a robust association. For triglycerides, the unrestricted allele score (67 SNPs) and the restricted allele score (27 SNPs) were both associated with CHD (OR: 1.62; 95% CI: 1.24, 2.11 and 1.61; 95% CI: 1.00, 2.59, respectively) per 1-log unit increment. However, the unrestricted triglyceride score adjusted for HDL-C, LDL-C, and statin use gave an OR for CHD of 1.01 (95% CI: 0.59, 1.75). Conclusion The genetic findings support a causal effect of triglycerides on CHD risk, but a causal role for HDL-C, though possible, remains less certain.M.V.H. was funded by a UK Medical Research Council Population Health Scientist Fellowship (G0802432). F.W.A. is supported by UCL Hospitals NIHR Biomedical Research Centre. D.I.S. is supported by a Medical Research Council Doctoral Training Award and a grant from the Rosetrees Foundation. ME.K. is supported by the National Institute of Aging and the National Heart, Lung and Blood Institute (HL36310). S.E.H. and P.J.T. are supported by the British Heart Foundation (BHF RG 08/008, PG/07/133/24260), UK Medical Research Council, the US National Institutes of Health (grant NHLBI 33014) and Du Pont Pharma, Wilmington, USA. N.J.S. holds a Chair funded by the British Heart Foundation and is an NIHR Senior Investigator. MI.K. is supported by the National Institute of Aging, the Medical Research Council, the British Heart Foundation, and the National Heart, Lung and Blood Institute and the Academy of Finland. A.D.H. and J.P.C. are supported by the National Institute of Health Research University College London Hospitals Biomedical Research Centre. Funding to pay the Open Access publication charges for this article was provided by RCUK

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security
    corecore