708 research outputs found

    Systematics of Gamow-Teller strengths in mid-fp-shell nuclei

    Full text link
    We show that the presently available data on the Gamow-Teller (GT) strength in mid-fp-shell nuclei are proportional to the product of the numbers of valence protons and neutron holes in the full fp-shell. This observation leads to important insights into the mechanism for GT quenching and to a simple parametrization of the Gamow-Teller strengths important for electron capture by fp-shell nuclei in the early stage of supernovae.Comment: 9 pages + 1 figure, Caltech preprint MAP-16

    Spectra of magnetic perturbations triggered by pellets in JET plasmas

    Get PDF
    Aiming at investigating edge localised mode (ELM) pacing for future application on ITER, experiments have been conducted on JET injecting pellets in different plasma configurations, including high confinement regimes with type-I and type-III ELMs, low confinement regimes and Ohmically heated plasmas. The magnetic perturbations spectra and the toroidal mode number, n, of triggered events are compared with those of spontaneous ELMs using a wavelet analysis to provide good time resolution of short-lived coherent modes. It is found that—in all these configurations—triggered events have a coherent mode structure, indicating that pellets can trigger an MHD event basically in every background plasma. Two components have been found in the magnetic perturbations induced by pellets, with distinct frequencies and toroidal mode numbers. In high confinement regimes triggered events have similarities with spontaneous ELMs: both are seen to start from low toroidal mode numbers, then the maximum measured n increases up to about 10 within 0.3 ms before the ELM burst

    Temperature dependence of the nuclear symmetry energy

    Get PDF
    We have studied the properties of A=54 and A=64 isobars at temperatures T \leq 2 MeV via Monte Carlo shell model calculations with two different residual interactions. In accord with empirical indications, we find that the symmetry energy coefficient, b_{sym}, is independent of temperature to within 0.6 MeV for T \leq 1 MeV. This is in contrast to a recent suggestion of a 2.5 MeV increase of b_{sym} for this temperature, which would have significantly altered the supernova explosion scenario.Comment: 7 pages, including 2 figures, Caltech preprint MAP-17

    Shell model Monte Carlo calculations for Dy-170

    Full text link
    We present the first auxiliary field Monte Carlo calculations for a rare earth nucleus, Dy-170. A pairing plus quadrupole Hamiltonian is used to demonstrate the physical properties that can be studied in this region. We calculate various static observables for both uncranked and cranked systems and show how the shape distribution evolves with temperature. We also introduce a discretization of the path integral that allows a more efficient Monte Carlo sampling.Comment: 11 pages, figures available upon request, Caltech Preprint No. MAP-16

    Pairing correlations in N~Z pf-shell nuclei

    Get PDF
    We perform Shell Model Monte Carlo calculations to study pair correlations in the ground states of N=ZN=Z nuclei with masses A=48-60. We find that T=1T=1, Jπ=0+J^{\pi}=0^+ proton-neutron correlations play an important, and even dominant role, in the ground states of odd-odd N=ZN=Z nuclei, in agreement with experiment. By studying pairing in the ground states of 52−58^{52-58}Fe, we observe that the isovector proton-neutron correlations decrease rapidly with increasing neutron excess. In contrast, both the proton, and trivially the neutron correlations increase as neutrons are added. We also study the thermal properties and the temperature dependence of pair correlations for 50^{50}Mn and 52^{52}Fe as exemplars of odd-odd and even-even N=ZN=Z nuclei. While for 52^{52}Fe results are similar to those obtained for other even-even nuclei in this mass range, the properties of 50^{50}Mn at low temperatures are strongly influenced by isovector neutron-proton pairing. In coexistence with these isovector pair correlations, our calculations also indicate an excess of isoscalar proton-neutron pairing over the mean-field values. The isovector neutron-proton correlations rapidly decrease with temperatures and vanish for temperatures above T=700T=700 keV, while the isovector correlations among like nucleons persist to higher temperatures. Related to the quenching of the isovector proton-neutron correlations, the average isospin decreases from 1, appropriate for the ground state, to 0 as the temperature increases

    Factorization of shell-model ground-states

    Full text link
    We present a new method that accurately approximates the shell-model ground-state by products of suitable states. The optimal factors are determined by a variational principle and result from the solution of rather low-dimensional eigenvalue problems. The power of this method is demonstrated by computations of ground-states and low-lying excitations in sd-shell and pf-shell nuclei.Comment: 5+epsilon pages, 5 eps-figures. Main additions: wave-function overlaps, angular momentum expectation values, application to Ni56. To be published as Rapid Communication in PR

    A Study of Parton Energy Loss in Au+Au Collisions at RHIC using Transport Theory

    Full text link
    Parton energy loss in Au+Au collisions at RHIC energies is studied by numerically solving the relativistic Boltzmann equation for the partons including 2↔22 \leftrightarrow 2 and 2→2+finalstateradiation2 \to 2 + final state radiation collision processes. Final particle spectra are obtained using two hadronization models; the Lund string fragmentation and independent fragmentation models. Recent, preliminary π0\pi^0 transverse momentum distributions from central Au+Au collisions at RHIC are reproduced using gluon-gluon scattering cross sections of 5-12 mb, depending upon the hadronization model. Comparisons with the HIJING jet quenching algorithm are made.Comment: 6 pages, 6 figures, attached files are replaced (wrong files were uploaded in version 1

    How magic is the magic 68Ni nucleus?

    Get PDF
    We calculate the B(E2) strength in 68Ni and other nickel isotopes using several theoretical approaches. We find that in 68Ni the gamma transition to the first 2+ state exhausts only a fraction of the total B(E2) strength, which is mainly collected in excited states around 5 MeV. This effect is sensitive to the energy splitting between the fp shell and the g_{9/2}orbital. We argue that the small experimental B(E2) value is not strong evidence for the double-magic character of 68Ni.Comment: 4 pages, 4 figure

    On the temperature dependence of the symmetry energy

    Get PDF
    We perform large-scale shell model Monte Carlo (SMMC) calculations for many nuclei in the mass range A=56-65 in the complete pfg_{9/2}d_{5/2} model space using an effective quadrupole-quadrupole+pairing residual interaction. Our calculations are performed at finite temperatures between T=0.33-2 MeV. Our main focus is the temperature dependence of the symmetry energy which we determine from the energy differences between various isobaric pairs with the same pairing structure and at different temperatures. Our SMMC studies are consistent with an increase of the symmetry energy with temperature. We also investigate possible consequences for core-collapse supernovae events
    • 

    corecore