645 research outputs found
Recommended from our members
Problem Solving with Diagrams: Modelling the Learning of Perceptual Information
Recommended from our members
An assessment of a three-beam Doppler lidar wind profiling method for use in urban areas
Currently there are few observations of the urban wind field at heights other than rooftop level. Remote sensing instruments such as Doppler lidars provide wind speed data at many heights, which would be useful in determining wind loadings of tall buildings, and predicting local air quality. Studies comparing remote sensing with traditional anemometers carried out in flat, homogeneous terrain often use scan patterns which take several minutes. In an urban context the flow changes quickly in space and time, so faster scans are required to ensure little change in the flow over the scan period. We compare 3993 h of wind speed data collected using a three-beam Doppler lidar wind profiling method with data from a sonic anemometer (190 m). Both instruments are located in central London, UK; a highly built-up area. Based on wind profile measurements every 2 min, the uncertainty in the hourly mean wind speed due to the sampling frequency is 0.05–0.11 m s−1. The lidar tended to overestimate the wind speed by ≈0.5 m s−1 for wind speeds below 20 m s−1. Accuracy may be improved by increasing the scanning frequency of the lidar. This method is considered suitable for use in urban areas
What do young athletes implicitly understand about psychological skills?
One reason sport psychologists teach psychological skills is to enhance performance in sport; but the value of psychological skills for young athletes is questionable because of the qualitative and quantitative differences between children and adults in their understanding of abstract concepts such as mental skills. To teach these skills effectively to young athletes, sport psychologists need to appreciate what young athletes implicitly understand about such skills because maturational (e.g., cognitive, social) and environmental (e.g., coaches) factors can influence the progressive development of children and youth. In the present qualitative study, we explored young athletes’ (aged 10–15 years) understanding of four basic psychological skills: goal setting, mental imagery, self-talk, and relaxation. Young athletes (n = 118: 75 males and 43 females) completed an open-ended questionnaire to report their understanding of these four basic psychological skills. Compared with the older youth athletes, the younger youth athletes were less able to explain the meaning of each psychological skill. Goal setting and mental imagery were better understood than self-talk and relaxation. Based on these findings, sport psychologists should consider adapting interventions and psychoeducational programs to match young athletes’ age and developmental level
Lepton flavor violation decays in the topcolor-assisted technicolor model and the littlest Higgs model with parity
The new particles predicted by the topcolor-assisted technicolor ()
model and the littlest Higgs model with T-parity (called model) can
induce the lepton flavor violation () couplings at tree level or one loop
level, which might generate large contributions to some processes. Taking
into account the constraints of the experimental data on the relevant free
parameters, we calculate the branching ratios of the decay processes
with = , and
in the context of these two kinds of new physics models. We find
that the model and the model can indeed produce significant
contributions to some of these decay processes.Comment: 24 pages, 7 figure
Callophycoic acids and callophycols from the Fijian red alga Callophycus serratus
Callophycoic acids A−H (1−8) and callophycols A and B (9 and 10) were isolated from extracts of the Fijian red alga Callophycus serratus, and identified by NMR, X-ray, and mass spectral analyses. These natural products represent four novel carbon skeletons, providing the first examples of diterpene−benzoic acids and diterpene−phenols in macroalgae. Compounds 1−10 exhibited antibacterial, antimalarial, and anticancer activity, although they are less bioactive than diterpene-benzoate macrolides previously isolated from this red alga
A note on the Sagnac effect and current terrestrial experiments
We focus on the Sagnac effect for light beams in order to evaluate if the higher-order relativistic corrections of kinematic origin could be relevant for actual terrestrial experiments. Moreover, we discuss to what extent the analogy with the Aharonov-Bohm effect holds true in a fully relativistic framework. We show that the analogy with the Aharonov-Bohm is not true in general, but is recovered in a suitable low-order approximation, and that even though the Sagnac effect is influenced by both the position of the interferometer in the rotating frame and its extension, these effects are negligible for current terrestrial experiment
Octupole transitions in the 208Pb region
The 208Pb region is characterised by the existence of collective octupole states. Here we populated such states in 208Pb + 208Pb deep-inelastic reactions. γ-ray angular distribution measurements were used to infer the octupole character of several E3 transitions. The octupole character of the 2318 keV 17- 14+ in 208Pb, 2485 keV 19/2- 13/2+ in 207Pb, 2419 keV 15/2- 9/2+ in 209Pb and 2465 keV 17/2+ 11/2- in 207Tl transitions was demonstrated for the first time. In addition, shell model calculations were performed using two different sets of two-body matrix elements. Their predictions were compared with emphasis on collective octupole states
Two-neutron and core-excited states in Pb 210: Tracing E3 collectivity and evidence for a new β -decaying isomer in Tl 210
Yrast and near-yrast levels up to an I=17 spin value and a 6-MeV excitation energy have been delineated in the "two-neutron" Pb210 nucleus following deep-inelastic reactions involving Pb208 targets and a number of heavy-ion beams at energies ∼25% above the Coulomb barrier. The level scheme was established on the basis of multifold prompt and delayed coincidence relationships measured with the Gammasphere array. In addition to the previously known states, many new levels were identified. For most of the strongly populated states, spin-parity assignments are proposed on the basis of angular distributions. The reinvestigation of the ν(g9/2)2, 8+ isomeric decay results in the firm identification of the low-energy E2 transitions involved in the 8+→6+→4+ cascade, and in a revised 6+ level half-life of 92(10) ns, nearly a factor of 2 longer than previously measured. Among the newly identified states figure spin I=4-10 levels associated with the νg9/2i11/2 multiplet, as well as yrast states involving νg9/2j15/2, νi11/2j15/2, and ν(j15/2)2 neutron couplings. The highest-spin excitations are understood as 1p-1h core excitations and the yrast population is found to be fragmented to the extent that levels of spin higher than I=17 could not be reached. Four E3 transitions are present in the Pb210 yrast decay; three of these involve the g9/2→j15/2 octupole component, as reflected in the 21(2) and >10 Weisskopf unit enhancements of the B(E3) rates of the first two. The fourth, 16+→13-E3 transition corresponds to the 3- core octupole excitation built on the νi11/2j15/2 state, in analogy to a similar E3 coupling to the νj15/2 level in Pb209. Shell-model calculations performed for two-neutron states and 1p-1h Pb208 core excitations are in good agreement with the data. Evidence was found for the existence of a hitherto unknown high-spin β-decaying isomer in Tl210. Shell-model calculations of the Tl210 levels suggest the possibility of a 11+ long-lived, β-decaying state, and the delayed yields observed in various reactions fit rather well with a Tl210 assignment
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
- …