562 research outputs found

    Use of complementary medicine among patients with allergic rhinitis: an Italian nationwide survey.

    Get PDF
    Background: A growing use of complementary alternative medicine (CAM) has been found in Europe as well in Italy for chronic diseases, including the allergic rhinitis. The study aims at investigating the prevalence and the pattern of use of CAM amongst patient with allergic rhinitis. Methods: A 12-item questionnaire was developed by a panel of experts and administered to patients with moderate/severe allergic rhinitis consecutively referring during the study time-frame to seven allergy clinics placed all around Italy. The items covered several topics including reason for choosing CAM, its clinical efficacy, schedule of treatment, costs, type of therapy. Results: Overall 359 questionnaires were analysed. 20% of patients declared CAM use. A significant correlation between the use of CAM and female sex (p\u2009<\u20090.01) and with a higher level of education (p\u2009<\u20090.01) was observed. CAM users were adults (36% in the range between 20 and 40 years and 32% between 41 and 60 years). Youngsters (<\u200920 years) (7%) and elderly (>\u200960) (25%) less frequently used CAM.The most used type of CAM was homoeopathy (77% of patients). 60% of users would recommend CAM despite a poor clinical efficacy according to 67% of them. Conclusions: Although no evidence supports CAM efficacy and safety, the number of patients who relies on it is not negligible. As allergic rhinitis is not a trivial disease, the use of CAM as the only treatment for it should be discouraged at any level, but by general practitioner and specialist in particular

    Outdoor particulate matter (PM10) exposure and lung cancer risk in the EAGLE study

    Get PDF
    Objective Cohort studies in Europe, but not in North-America, showed an association between exposure to outdoor particulate matter with aerodynamic diameter ≤10 μm (PM10) and lung cancer risk. Only a case-control study on lung cancer and PM10 in South Korea has so far been performed. For the first time in Europe we analyzed quantitatively this association using a case-control study design in highly polluted areas in Italy. Methods The Environment And Genetics in Lung cancer Etiology (EAGLE) study, a population-based case-control study performed in the period 2002-2005 in the Lombardy Region, north-west Italy, enrolled 2099 cases and 2120 controls frequency-matched for area of residence, gender, and age. For this study we selected subjects with complete active and passive smoking history living in the same municipality since 1980 until study enrollment. Fine resolution annual PM10 estimates obtained by applying land use regression modeling to satellite data calibrated with fixed site monitor measurements were used. We assigned each subject the PM10 average estimates for year 2000 based on enrollment address. We used logistic regression models to calculate odds ratios (OR) and 95% confidence intervals (CI) adjusted for matching variables, education, smoking, and dietary and occupational variables. Results We included 3473 subjects, 1665 cases (1318 men, 347 women) and 1808 controls (1368 men, 440 women), with PM10 individual levels ranging from 2.3 to 53.8 μg/m3 (mean: 46.3). We found increasing lung cancer risk with increasing PM10 category (P-value for trend: 0.04). The OR per 10 μg/m3 was 1.28 (95% CI: 0.95-1.72). The association appeared stronger for squamous cell carcinoma (OR 1.44, 95% CI: 0.90-2.29). Conclusion In a population living in highly polluted areas in Italy, our study added suggestive evidence of a positive association between PM10 exposure and lung cancer risk. This study emphasizes the need to strengthen policies to reduce airborne pollution

    PCB Exposure and in Vivo CYP1A2 Activity among Native Americans

    Get PDF
    Cytochrome P-450 1A2 (CYP1A2) is an enzyme involved in the metabolic activation of some carcinogens and is believed to be induced by xenobiotics. Very few studies, however, have investigated the association between environmental exposures and in vivo CYP1A2 activity in humans. To address this issue, a study was conducted of CYP1A2 activity among Native Americans exposed to polychlorinated biphenyls (PCBs) from the consumption of fish from the St. Lawrence River. At the Mohawk Nation at Akwesasne (in New York and in Ontario and Quebec, Canada), 103 adults were interviewed, and they donated blood for serum PCB analysis and underwent the caffeine breath test (CBT), a safe and noninvasive procedure that uses caffeine as a probe for CYP1A2 activity in vivo. The results supported the findings of other studies that CBT values are higher among smokers and men and lower among women who use oral contraceptives. Despite a relatively low average total PCB body burden in this population, the sum of serum levels for nine mono- or di-ortho-substituted PCB congeners showed positive associations with CBT values (p = 0.052 wet weight and p = 0.029 lipid adjusted), as did toxic equivalent quantities (TEQs; p = 0.091 for wet weight and 0.048 for lipid adjusted). Regarding individual congeners, serum levels of PCB-153, PCB-170, and PCB-180 were significantly correlated with CBT values. The results support the notion that CYP1A2 activity may be a marker of an early biological effect of exposure to PCBs in humans and that the CBT may be a useful tool to monitor such effects

    Targeted DNA methylation by homology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene.

    Get PDF
    We report that homology-directed repair of a DNA double-strand break within a single copy Green Fluorescent Protein (GFP) gene in HeLa cells alters the methylation pattern at the site of recombination. DNA methyl transferase (DNMT)1, DNMT3a and two proteins that regulate methylation, Np95 and GADD45A, are recruited to the site of repair and are responsible for selective methylation of the promoter-distal segment of the repaired DNA. The initial methylation pattern of the locus is modified in a transcription-dependent fashion during the 15\u201320 days following repair, at which time no further changes in the methylation pattern occur. The variation in DNA modification generates stable clones with wide ranges of GFP expression. Collectively, our data indicate that somatic DNA methylation follows homologous repair and is subjected to remodeling by local transcription in a discrete time window during and after the damage. We propose that DNA methylation of repaired genes represents a DNA damage code and is source of variation of gene expression

    Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival

    Get PDF
    BACKGROUND: MicroRNAs (miRs) have an important role in lung carcinogenesis and progression. Single-nucleotide polymorphisms (SNPs) in genes involved in miR biogenesis may affect miR expression in lung tissue and be associated with lung carcinogenesis and progression. METHODS: we analysed 12 SNPs in POLR2A, RNASEN and DICER1 genes in 1984 cases and 2073 controls from the Environment And Genetics in Lung cancer Etiology (EAGLE) study. We investigated miR expression profiles in 165 lung adenocarcinoma (AD) and 125 squamous cell carcinoma tissue samples from the same population. We used logistic and Cox regression models to examine the association of individual genotypes and haplotypes with lung cancer risk and with lung cancer-specific survival, respectively. SNPs-miR expression associations in cases were assessed using two-sample t-tests and global permutation tests. RESULTS: a haplotype in RNASEN (Drosha) was significantly associated with shorter lung cancer survival (hazard ratio=1.86, 95% CI=1.19-2.92, P=0.007). In AD cases, a SNP within the same haplotype was associated with reduced RNASEN mRNA expression (P=0.013) and with miR expression changes (global P=0.007) of miRs known to be associated with cancer (e.g., let-7 family, miR-21, miR-25, miR-126 and miR15a). CONCLUSION: inherited variation in the miR-processing machinery can affect miR expression levels and lung cancer-specific survival

    Genetic Relationship Between Endometriosis and Melanoma

    Get PDF
    Epidemiological studies have observed that risk of endometriosis is associated with history of cutaneous melanoma and vice versa. Evidence for shared biological mechanisms between the two traits is limited. The aim of this study was to investigate the genetic correlation and causal relationship between endometriosis and melanoma. Summary statistics from genome-wide association meta-analyses (GWAS) for endometriosis and melanoma were used to estimate the genetic correlation between the traits and Mendelian randomization was used to test for a causal association. When using summary statistics from separate female and male melanoma cohorts we identified a significant positive genetic correlation between melanoma in females and endometriosis (rg = 0.144, se = 0.065, p = 0.025). However, we find no evidence of a correlation between endometriosis and melanoma in males or a combined melanoma dataset. Endometriosis was not genetically correlated with skin color, red hair, childhood sunburn occasions, ease of skin tanning, or nevus count suggesting that the correlation between endometriosis and melanoma in females is unlikely to be influenced by pigmentary traits. Mendelian Randomization analyses also provided evidence for a relationship between the genetic risk of melanoma in females and endometriosis. Colocalization analysis identified 27 genomic loci jointly associated with the two diseases regions that contain different causal variants influencing each trait independently. This study provides evidence of a small genetic correlation and relationship between the genetic risk of melanoma in females and endometriosis. Genetic risk does not equate to disease occurrence and differences in the pathogenesis and age of onset of both diseases means it is unlikely that occurrence of melanoma causes endometriosis. This study instead provides evidence that having an increased genetic risk for melanoma in females is related to increased risk of endometriosis. Larger GWAS studies with increased power will be required to further investigate these associations

    On dynamic network entropy in cancer

    Get PDF
    The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network to induce a stochastic dynamics on the network, we here demonstrate that cancer cells are characterised by an increase in the dynamic network entropy, compared to cells of normal physiology. Using a fundamental relation between the macroscopic resilience of a dynamical system and the uncertainty (entropy) in the underlying microscopic processes, we argue that cancer cells will be more robust to random gene perturbations. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local dynamic entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local network dynamics. In particular, we also find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in the dynamic network entropy. In summary, our results support the view that the observed increased robustness of cancer cells to perturbation and therapy may be due to an increase in the dynamic network entropy that allows cells to adapt to the new cellular stresses. Conversely, genes that exhibit local flux entropy decreases in cancer may render cancer cells more susceptible to targeted intervention and may therefore represent promising drug targets.Comment: 10 pages, 3 figures, 4 tables. Submitte
    corecore