34 research outputs found

    The influence of wildlife water developments and vegetation on rodent abundance in the Great Basin Desert

    Get PDF
    Rodent communities have multiple functions including comprising a majority of the mammalian diversity within an ecosystem, providing a significant portion of the available biomass consumed by predators, and contributing to ecosystem services. Despite the importance of rodent communities, few investigations have explored the effects of increasing anthropogenic modifications to the landscape on rodents. Throughout the western United States, the construction of artificial water developments to benefit game species is commonplace. While benefits for certain species have been documented, several researchers recently hypothesized that these developments may cause unintentional negative effects to desert-adapted species and communities. To test this idea, we sampled rodents near to and distant from wildlife water developments over 4 consecutive summers. We employed an asymmetrical before-after-control-impact (BACI) design with sampling over 4 summers to determine if water developments influenced total rodent abundance. We performed an additional exploratory analysis to determine if factors other than free water influenced rodent abundance. We found no evidence that water developments impacted rodent abundance. Rodent abundance was primarily driven by vegetation type and year of sampling. Our findings suggested that water developments on our study area do not represent a significant disturbance to rodent abundance and that rodent abundance was influenced by the vegetative community and temporal factors linked to precipitation and primary plant production. Our findings represent one of the 1st efforts to determine the effects of an anthropogenic activity on the rodent community utilizing a manipulation design

    Efficiency of the Summer Monsoon in Generating Streamflow Within a Snow‐Dominated Headwater Basin of the Colorado River

    No full text
    The North American Monsoon occurs July–September in the central Rocky Mountains bringing significant rainfall to Colorado River headwater basins. This rain may buffer streamflow deficiencies caused by reductions in snow accumulation. Using a data-modeling framework, we explore the importance of monsoon rain in streamflow generation over historical conditions in an alpine basin. Annually, monsoon rain contributes 18 ± 7% water inputs and generates 10 ± 6% streamflow. The bulk of rain supports evapotranspiration in lower subalpine forests. However, rains have the potential to produce appreciable streamflow at higher elevations where soil moisture storage, forest cover, and aridity are low and rebound late season streamflow 64 ± 13% from simulated reductions in spring snowpack as a function of monsoon strength. Interannual variability in monsoon efficiency to generate streamflow declines with low snowpack and high aridity, implying the ability of monsoons to replenish streamflow in a warmer future with less snow accumulation will diminish
    corecore