20 research outputs found

    Addressing the inter-individual variation in response to consumption of plant food bioactives : Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction

    Get PDF
    Bioactive compounds in plant-based foods have health properties that contribute to the prevention of age-related chronic diseases, particularly cardiometabolic disorders. Conclusive proof and understanding of these benefits in humans is essential in order to provide effective dietary recommendations but, so far, the evidence obtained from human intervention trials is limited and contradictory. This is partly due to differences between individuals in the absorption, distribution, metabolism and excretion of bioactive compounds, as well as to heterogeneity in their biological response regarding cardiometabolic health outcomes. Identifying the main factors underlying inter-individual differences, as well as developing new and innovative methodologies to account for such variability constitute an overarching goal to ultimately optimize the beneficial health effects of plant food bioactives for each and every one of us. In this respect, this position paper from the COST Action FA1403-POSITIVe examines the main factors likely to affect the individual responses to consumption of plant food bioactives and presents perspectives for assessment and consideration of inter-individual variability.Peer reviewe

    Targeting the delivery of dietary plant bioactives to those who would benefit most: From science to practical applications

    Get PDF
    Background: A healthy diet and optimal lifestyle choices are amongst the most important actions for the prevention of cardiometabolic diseases. Despite this, it appears difficult to convince consumers to select more nutritious foods. Furthermore, the development and production of healthier foods do not always lead to economic profits for the agro-food sector. Most dietary recommendations for the general population represent a “one-size-fits-all approach” which does not necessarily ensure that everyone has adequate exposure to health-promoting constituents of foods. Indeed, we now know that individuals show a high variability in responses when exposed to specific nutrients, foods, or diets. Purpose: This review aims to highlight our current understanding of inter-individual variability in response to dietary bioactives, based on the integration of findings of the COST Action POSITIVe. We also evaluate opportunities for translation of scientific knowledge on inter-individual variability in response to dietary bioactives, once it becomes available, into practical applications for stakeholders, such as the agro-food industry. The potential impact from such applications will form an important impetus for the food industry to develop and market new high quality and healthy foods for specific groups of consumers in the future. This may contribute to a decrease in the burden of diet-related chronic diseases

    LongITools: Dynamic longitudinal exposome trajectories in cardiovascular and metabolic noncommunicable diseases

    Get PDF
    The current epidemics of cardiovascular and metabolic noncommunicable diseases have emerged alongside dramatic modifications in lifestyle and living environments. These correspond to changes in our “modern” postwar societies globally characterized by rural-to-urban migration, modernization of agricultural practices, and transportation, climate change, and aging. Evidence suggests that these changes are related to each other, although the social and biological mechanisms as well as their interactions have yet to be uncovered. LongITools, as one of the 9 projects included in the European Human Exposome Network, will tackle this environmental health equation linking multidimensional environmental exposures to the occurrence of cardiovascular and metabolic noncommunicable diseases.</p

    Why interindividual variation in response to consumption of plant food bioactives matters for future personalised nutrition

    No full text
    Part of: Nutrition Society Spring Meeting 2019 Conference on ‘Inter-individual differences in the nutrition response: from research to recommendations’Food phytochemicals are increasingly considered to play a key role in the cardiometabolic health effects of plant foods. However, the heterogeneity in responsiveness to their intake frequently observed in clinical trials can hinder the beneficial effects of these compounds in specific subpopulations. A range of factors, including genetic background, gut microbiota, age, sex and health status, could be involved in these interindividual variations; however, the current knowledge is limited and fragmented. The European network, European Cooperation in Science and Technology (COST)-POSITIVe, has analysed, in a systematic way, existing knowledge with the aim to better understand the factors responsible for the interindividual variation in response to the consumption of the major families of plant food bioactives, regarding their bioavailability and bioefficacy. If differences in bioavailability, likely reflecting differences in human subjects’ genetics or in gut microbiota composition and functionality, are believed to underpin much of the interindividual variability, the key molecular determinants or microbial species remain to be identified. The systematic analysis of published studies conducted to assess the interindividual variation in biomarkers of cardiometabolic risk suggested some factors (such as adiposity and health status) as involved in between-subject variation. However, the contribution of these factors is not demonstrated consistently across the different compounds and biological outcomes and would deserve further investigations. The findings of the network clearly highlight that the human subjects’ intervention studies published so far are not adequate to investigate the relevant determinants of the absorption/metabolism and biological responsiveness. They also emphasise the need for a new generation of intervention studies designed to capture this interindividual variation

    Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study

    No full text
    Abstract Wide-scale profiling technologies including metabolomics broaden the possibility of novel discoveries related to the pathogenesis of type 2 diabetes (T2D). By applying non-targeted metabolomics approach, we investigated here whether serum metabolite profile predicts T2D in a well-characterized study population with impaired glucose tolerance by examining two groups of individuals who took part in the Finnish Diabetes Prevention Study (DPS); those who either early developed T2D (n = 96) or did not convert to T2D within the 15-year follow-up (n = 104). Several novel metabolites were associated with lower likelihood of developing T2D, including indole and lipid related metabolites. Higher indolepropionic acid was associated with reduced likelihood of T2D in the DPS. Interestingly, in those who remained free of T2D, indolepropionic acid and various lipid species were associated with better insulin secretion and sensitivity, respectively. Furthermore, these metabolites were negatively correlated with low-grade inflammation. We replicated the association between indolepropionic acid and T2D risk in one Finnish and one Swedish population. We suggest that indolepropionic acid, a gut microbiota-produced metabolite, is a potential biomarker for the development of T2D that may mediate its protective effect by preservation of ÎČ-cell function. Novel lipid metabolites associated with T2D may exert their effects partly through enhancing insulin sensitivity
    corecore