182 research outputs found

    Bird pollinators, seed storage and cockatoo granivores explain large woody fruits as best seed defense in Hakea

    Get PDF
    Nutrient-impoverished soils with severe summer drought and frequent fire typify many Mediterranean-type regions of the world. Such conditions limit seed production and restrict opportunities for seedling recruitment making protection from granivores paramount. Our focus was on Hakea, a genus of shrubs widespread in southwestern Australia, whose nutritious seeds are targeted by strong-billed cockatoos. We assessed 56 Hakea species for cockatoo damage in 150 populations spread over 900 km in relation to traits expected to deter avian granivory: dense spiny foliage; large, woody fruits; fruit crypsis via leaf mimicry and shielding; low seed stores; and fruit clustering. We tested hypothesises centred on optimal seed defenses in relation to (a) pollination syndrome (bird vs insect), (b) fire regeneration strategy (killed vs resprouting) and (c) on-plant seed storage (transient vs prolonged).Twenty species in 50 populations showed substantial seed loss from cockatoo granivory. No subregional trends in granivore damage or protective traits were detected, though species in drier, hotter areas were spinier. Species lacking spiny foliage around the fruits (usually bird-pollinated) had much larger (4–5 times) fruits than those with spiny leaves and cryptic fruits (insect-pollinated). Species with woody fruits weighing >1 g were rarely attacked, unlike those with spiny foliage and small cryptic fruits. Fire-killed species were just as resistant to granivores as resprouters but with much greater seed stores. Strongly serotinous species with prolonged seed storage were rarely attacked, with an order of magnitude larger fruits but no difference in seed store compared with weakly/non-serotinous species. Overall, the five traits examined could be ranked in success at preventing seed loss from large woody fruits (most effective), fruit clustering, low seed stores, spinescence, to crypsis (least effective). We conclude that the evolution of large woody fruits is contingent on pollinator type (dictates flower/fruit location, thus apparency to granivores), level of serotiny (response to poor soils and fire that requires prolonged seed defense) and presence of a formidable granivore (that promotes strong defense)

    Fire as a Selective Agent for both Serotiny and Nonserotiny Over Space and Time

    Get PDF
    Acceptance date approximate as author was not able to supply

    A Cretaceous origin for fire adaptations in the Cape flora

    Get PDF
    Fire has had a profound effect on the evolution of worldwide biotas. The Cape Floristic Region is one of the world's most species-rich regions, yet it is highly prone to recurrent fires and fire-adapted species contribute strongly to the overall flora. It is hypothesized that the current fire regimes in the Cape could be as old as 6-8 million years (My), while indirect evidence indicates that the onset of fire could have reached 18 million years ago (Ma). Here, we trace the origin of fire-dependent traits in two monocot families that are significant elements in the fire-prone Cape flora. Our analysis shows that fire-stimulated flowering originated in the Cape Haemodoraceae 81 Ma, while fire-stimulated germination arose in the African Restionaceae at least 70 Ma, implying that wildfires have been a significant force in the evolution of the Cape flora at least 60 My earlier than previous estimates. Our results provide strong evidence for the presence of fire adaptations in the Cape from the Cretaceous, leading to the extraordinary persistence of a fire-adapted flora in this biodiversity hotspot, and giving support to the hypothesis that Cretaceous fire was a global phenomenon that shaped the evolution of terrestrial floras

    High nutrient-use efficiency during early seedling growth in diverse Grevillea species (Proteaceae)

    Get PDF
    Several hypotheses have been proposed to explain the rich floristic diversity in regions characterised by nutrient-impoverished soils; however, none of these hypotheses have been able to explain the rapid diversification over a relatively short evolutionary time period of Grevillea, an Australian plant genus with 452 recognised species/subspecies and only 11 million years of evolutionary history. Here, we hypothesise that the apparent evolutionary success of Grevillea might have been triggered by the highly efficient use of key nutrients. The nutrient content in the seeds and nutrient-use efficiency during early seedling growth of 12 species of Grevillea were compared with those of 24 species of Hakea, a closely related genus. Compared with Hakea, the Grevillea species achieved similar growth rates (root and shoot length) during the early stages of seedling growth but contained only approximately half of the seed nutrient content. We conclude that the high nutrient-use efficiency observed in Grevillea might have provided a selective advantage in nutrient-poor ecosystems during evolution and that this property likely contributed to the evolutionary success in Grevillea

    Video-supported Analysis of Beggiatoa Filament Growth, Breakage, and Movement

    Get PDF
    A marine Beggiatoa sp. was cultured in semi-solid agar with opposing oxygen-sulfide gradients. Growth pattern, breakage of filaments for multiplication, and movement directions of Beggiatoa filaments in the transparent agar were investigated by time-lapse video recording. The initial doubling time of cells was 15.7 ± 1.3 h (mean ± SD) at room temperature. Filaments grew up to an average length of 1.7 ± 0.2 mm, but filaments of up to approximately 6 mm were also present. First breakages of filaments occurred approximately 19 h after inoculation, and time-lapse movies illustrated that a parent filament could break into several daughter filaments within a few hours. In >20% of the cases, filament breakage occurred at the tip of a former loop. As filament breakage is accomplished by the presence of sacrificial cells, loop formation and the presence of sacrificial cells must coincide. We hypothesize that sacrificial cells enhance the chance of loop formation by interrupting the communication between two parts of one filament. With communication interrupted, these two parts of one filament can randomly move toward each other forming the tip of a loop at the sacrificial cell

    Bioturbation in a Declining Oxygen Environment, in situ Observations from Wormcam

    Get PDF
    Bioturbation, the displacement and mixing of sediment particles by fauna or flora, facilitates life supporting processes by increasing the quality of marine sediments. In the marine environment bioturbation is primarily mediated by infaunal organisms, which are susceptible to perturbations in their surrounding environment due to their sedentary life history traits. Of particular concern is hypoxia, dissolved oxygen (DO) concentrations ≤2.8 mg l−1, a prevalent and persistent problem that affects both pelagic and benthic fauna. A benthic observing system (Wormcam) consisting of a buoy, telemetering electronics, sediment profile camera, and water quality datasonde was developed and deployed in the Rappahannock River, VA, USA, in an area known to experience seasonal hypoxia from early spring to late fall. Wormcam transmitted a time series of in situ images and water quality data, to a website via wireless internet modem, for 5 months spanning normoxic and hypoxic periods. Hypoxia was found to significantly reduce bioturbation through reductions in burrow lengths, burrow production, and burrowing depth. Although infaunal activity was greatly reduced during hypoxic and near anoxic conditions, some individuals remained active. Low concentrations of DO in the water column limited bioturbation by infaunal burrowers and likely reduced redox cycling between aerobic and anaerobic states. This study emphasizes the importance of in situ observations for understanding how components of an ecosystem respond to hypoxia

    Are Farm-Reared Quails for Game Restocking Really Common Quails (Coturnix coturnix)?: A Genetic Approach

    Get PDF
    The common quail (Coturnix coturnix) is a popular game species for which restocking with farm-reared individuals is a common practice. In some areas, the number of released quails greatly surpasses the number of wild breeding common quail. However, common quail are difficult to raise in captivity and this casts suspicion about a possible hybrid origin of the farmed individuals from crosses with domestic Japanese quail (C. japonica). In this study we used a panel of autosomal microsatellite markers to characterize the genetic origin of quails reared for hunting purposes in game farms in Spain and of quails from an experimental game farm which was founded with hybrids that have been systematically backcrossed with wild common quails. The genotypes of these quail were compared to those of wild common quail and domestic strains of Japanese quail. Our results show that more than 85% of the game farm birds were not common quail but had domestic Japanese quail ancestry. In the experimental farm a larger proportion of individuals could not be clearly separated from pure common quails. We conclude that the majority of quail sold for restocking purposes were not common quail. Genetic monitoring of individuals raised for restocking is indispensable as the massive release of farm-reared hybrids could represent a severe threat for the long term survival of the native species

    Influence of phenological barriers and habitat differentiation on the population genetic structure of the balearic endemic Rhamnus ludovici-salvatoris Chodat and R. alaternus L

    Full text link
    [EN] Rhamnus ludovici-salvatoris, endemic to the Gymnesian Islands, coexists with the related and widespread R. alaternus in Mallorca and Menorca. In both species, the population genetic structure using RAPD, and flowering during a 3-year period to check for possible phenological barriers, were analyzed. Rhamnus ludovici-salvatoris showed lower genetic diversity and stronger population structure than R. alaternus, the Cabrera population being less diverse and the most differentiated. Rhamnus ludovici-salvatoris flowered one month later, although flowering of both species coincided sporadically. These congeners seem to have diverged through isolation by time and differentiation in habitat. The population genetic structure of R. ludovici-salvatoris could mainly be due to the existence of small populations on the one hand, and a gene flow caused by rare hybridization events on the other, which may also explain the presence of morphologically intermediate individuals in Menorca. The conservation of R. ludovici-salvatoris populations may include population reinforcements and other in situ interventions.Ferriol Molina, M.; Llorens García, L.; Gil, L.; Boira Tortajada, H. (2009). Influence of phenological barriers and habitat differentiation on the population genetic structure of the balearic endemic Rhamnus ludovici-salvatoris Chodat and R. alaternus L. Plant Systematics and Evolution. 277(1-2):105-116. doi:10.1007/s00606-008-0110-3S1051162771-2Affre L, Thompson JD, Debussche M (1997) Genetic structure of continental and island populations of the Mediterranean endemic Cyclamen balearicum (Primulaceae). Amer J Bot 84(4): 437–451BOIB (2005) Decreto 75/2005. BOIB 106: 29–32Bolmgren K, Oxelman B (2004) Generic limits in Rhamnus L. s.l. (Rhamnaceae) inferred from nuclear and chloroplast DNA sequence phylogenies. Taxon 53(2):383–390Bolòs O, Molinier R (1958) Recherches phytosociologiques dans l’île de Majorque. Collectanea Botanica 34:699–865Cardona MA (1979) Consideracions sobre l’endemisme i l’origen de la flora de las Illes Balears. Butlletí del Institut Catalá de Historia Natural 44 (Sec. Bot. 3):7–15Cardona MA, Contandriopoulos J (1979) Endemism and evolution in the islands of the Western Mediterranean. In: Bramwell D (ed) Plants and islands. Academic Press, London, pp 133–169Chodat L (1924) Contributions à la Géo-Botanique de Majorque. PhD Thesis, Université de Genève—Institut de Botanique, SwitzerlandCollins D, Mill RR, Moller M (2003) Species separation of Taxus baccata, T. canadensis, and T. cuspidata (Taxaceae) and origins of their reputed hybrids inferred from RAPD and cpDNA data. Amer J Bot 90(2):175–182Cronk QCB (1997) Islands: stability, diversity, conservation. Biodivers Conserv 6(3):477–493Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Ducarme V, Wesselingh RA (2005) Detecting hybridization in mixed populations of Rhinanthus minor and Rhinanthus angustifolius. Folia Geobot 40(2/3):151–161Englishloeb GM, Karban R (1992) Consequences of variation in flowering phenology for seed head herbivory and reproductive success in Erigeron glaucus (Compositae). Oecologia 89:588–595Gautier F, Caluzon G, Suk JP, Violanti D (1994) Age et durée de la crise de salinité Messinienne. Comptes Rendus de l’Académie des Sciences de Paris 318:1103–1109Gerard PR, Fernandez-Manjarres JF, Frascaria-Lacoste N (2006) Temporal cline in a hybrid zone population between Fraxinus excelsior L. and Fraxinus angustifolia Vahl. Molec Ecol 15:3655–3667Gil L, Llorens L, Tébar FJ, Costa M (1995) La vegetación de la isla de Cabrera. In: Guía de la excursión geobotánica de las XV Jornadas de Fitosociología. Datos sobre la vegetación de Cabrera. Palma de Mallorca: Universitat de les Illes Balears, pp 51–77Gulías J, Flexas J, Abadía A, Medrano H (2002) Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, and endemic Balearic species. Tree Physiol 22:687–697Gulías J, Traveset A, Riera N, Mus M (2004) Critical stages in the recruitment process of Rhamnus alaternus L. Ann Bot 93:723–731Gustafsson S, Sjögren-Gulve P (2002) Genetic diversity in the rare orchid, Gymnadenia odoratissima and a comparison with the more common congener, G. conopsea. Conserv Genet 3:225–234Gustafsson S (2003) Population genetic analyses in the orchid genus Gymnadenia—a conservation genetic perspective. PhD Thesis, Uppsala University, SwedenGustafsson S, Lönn M (2003) Genetic differentiation and habitat preference of flowering-time variants within Gymnadenia conopsea. Heredity 91:284–292Harris W (1996) Genecological aspects of flowering patterns of populations of Kunzea ericoides and K. sinclairii (Myrtaceae). New Zealand J Bot 34:333–354Hendry AP, Dray T (2005) Population structure attributable to reproductive time: isolation by time and adaptation by time. Molec Ecol 14:901–916Hosokawa K, Minami M, Kawahara K, Nakamura I, Shibata T (2000) Discrimination among three species of medicinal Scutellaria plants using RAPD markers. Pl Med 66:270–272Huang Z, Liu L, Zhou T, Ju B (2005) Effects of environmental factors on the population genetic structure in chukar partridge (Alectoris chukar). J Arid Environ 62:427–434Juan A, Crespo MB, Cowan RS, Lexer C, Fay F (2004) Patterns of variability and gene flow in Medicago citrina, an endangered endemic of islands in the western Mediterranean, as revealed by amplified fragment length polymorphism (AFLP). Molec Ecol 13:2679–2690Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655Lamont BB, He T, Enright NJ, Krauss SL, Miller BP (2003) Anthropogenic disturbance promotes hybridization between Banksia species by altering their biology. J Evol Biol 16:551–557Lennartsson T (1997) Seasonal differentiation—a conservative reproductive barrier in two grassland Gentianella (Gentianaceae) species. Pl Syst Evol 208:45–69Martinez-Solis I, Iranzo J, Estrelles E, Ibars AM (1993) Leaf domatia in the section Alaternus (Miller) DC. of the genus Rhamnus (Rhamnaceae). Bot J Linn Soc 112:311–318McIntosh ME (2002) Flowering phenology and reproductive output in two sister species of Ferocactus (Cactaceae). Pl Ecol 159:1–13Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323Nei M (1978) Estimation of average heterozigosity and genetic distance from a small number of individuals. Genetics 89:583–590Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 79:5269–5273Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Pl Ecol Evol Syst 3(2):93–114Oostermeijer JGB, Luijten SH, Ellis-Adam AC, den Nijs JCM (2002) Future prospects for the rare, late-flowering Gentianella germanica and Gentianopsis ciliata in Dutch nutrient-poor calcareous grasslands. Biol Conserv 104:339–350Pease CM, Lande R, Bull JJ (1989) A model of population growth, dispersal and evolution in a changing environment. Ecology 70(6):1657–1664Perron M, Gordon AG, Bousquet J (1995) Species-specific RAPD fingerprints for the closely related Picea mariana and P. rubens. Theor Appl Genet 91:142–149Pierce S, Ceriani RM, Villa M, Cerabolini B (2006) Quantifying relative extinction risks and targeting intervention for the orchid flora of a natural park in the European prealps. Conserv Biol 20(6):1804–1810Richardson JE, Fay MF, Cronk QCB, Bowman D, Chase MW (2000) A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences. Amer J Bot 87(9):1309–1324Roselló JA, Sáez L (2000) Index Balearicum: an annotated check-list of the vascular plants described from the Balearic Islands. Collect Bot 25(1):3–203Roselló JA, Cebrián MC, Mayol M (2002) Testing taxonomic and biogeographical relationships in a narrow mediterranean endemic complex (Hippocrepis balearica) using RAPD markers. Ann Bot 89:321–327Sales E, Nebauer SG, Mus M, Segura J (2001) Population genetic study in the Balearic plant species Digitalis minor (Scrophulariaceae) using RAPD markers. Amer J Bot 88(10):1750–1759Sherwin WB, Moritz C (2000) Managing and monitoring genetic erosion. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge, pp 9–34Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman and Co., San FranciscoTraveset A, Gulías J, Riera N, Mus M (2003) Transition probabilities from pollination to establishment in a rare dioecious shrub species (Rhamnus ludovici-salvatoris) in two habitats. J Ecol 91:427–437Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) (2001) Flora Europaea, vol 2. Rosaceae to Umbelliferae. Cambridge University Press, CambridgeWright S (1931) Evolution in Mendelian populations. Genetics 16:97–159Zimmerman M (1980a) Reproduction in Polemonium: pre-dispersal seed predation. Ecology 61:502–506Zimmerman M (1980b) Reproduction in Polemonium: competition for pollinators. Ecology 61:497–50

    Effective Long-Distance Pollen Dispersal in Centaurea jacea

    Get PDF
    BACKGROUND: Agri-environment schemes play an increasingly important role for the conservation of rare plants in intensively managed agricultural landscapes. However, little is known about their effects on gene flow via pollen dispersal between populations of these species. METHODOLOGY/PRINCIPAL FINDINGS: In a 2-year experiment, we observed effective pollen dispersal from source populations of Centaurea jacea in restored meadows, the most widespread Swiss agri-environment scheme, to potted plants in adjacent intensively managed meadows without other individuals of this species. Potted plants were put in replicated source populations at 25, 50, 100 m and where possible 200 m distance from these source populations. Pollen transfer among isolated plants was prevented by temporary bagging, such that only one isolated plant was accessible for flower visitors at any one time. Because C. jacea is self-incompatible, seed set in single-plant isolates indicated insect mediated effective pollen dispersal from the source population. Seed set was higher in source populations (35.7+/-4.4) than in isolates (4.8+/-1.0). Seed set declined from 18.9% of that in source populations at a distance of 25 m to 7.4% at 200 m. At a distance of 200 m seed set was still significantly higher in selfed plants, indicating long-distance effective pollen dispersal up to 200 m. Analyses of covariance suggested that bees contributed more than flies to this long-distance pollen dispersal. We found evidence that pollen dispersal to single-plant isolates was positively affected by the diversity and flower abundance of neighboring plant species in the intensively managed meadow. Furthermore, the decline of the dispersal was less steep when the source population of C. jacea was large. CONCLUSIONS: We conclude that insect pollinators can effectively transfer pollen from source populations of C. jacea over at least 200 m, even when "recipient populations" consisted of single-plant isolates, suggesting that gene flow by pollen over this distance is very likely. Source population size and flowering environment surrounding recipient plants appear to be important factors affecting pollen dispersal in C. jacea. It is conceivable that most insect-pollinated plants in a network of restored sites within intensively managed grassland can form metapopulations, if distances between sites are of similar magnitude as tested here

    A Sex-Specific Metabolite Identified in a Marine Invertebrate Utilizing Phosphorus-31 Nuclear Magnetic Resonance

    Get PDF
    Hormone level differences are generally accepted as the primary cause for sexual dimorphism in animal and human development. Levels of low molecular weight metabolites also differ between men and women in circulating amino acids, lipids and carbohydrates and within brain tissue. While investigating the metabolism of blue crab tissues using Phosphorus-31 Nuclear Magnetic Resonance, we discovered that only the male blue crab (Callinectes sapidus) contained a phosphorus compound with a chemical shift well separated from the expected phosphate compounds. Spectra obtained from male gills were readily differentiated from female gill spectra. Analysis from six years of data from male and female crabs documented that the sex-specificity of this metabolite was normal for this species. Microscopic analysis of male and female gills found no differences in their gill anatomy or the presence of parasites or bacteria that might produce this phosphorus compound. Analysis of a rare gynandromorph blue crab (laterally, half male and half female) proved that this sex-specificity was an intrinsic biochemical process and was not caused by any variations in the diet or habitat of male versus female crabs. The existence of a sex-specific metabolite is a previously unrecognized, but potentially significant biochemical phenomenon. An entire enzyme system has been synthesized and activated only in one sex. Unless blue crabs are a unique species, sex-specific metabolites are likely to be present in other animals. Would the presence or absence of a sex-specific metabolite affect an animal's development, anatomy and biochemistry
    corecore