578 research outputs found

    Validation of a multiplex reverse transcription and pre-amplification method using TaqMan(®) MicroRNA assays.

    Get PDF
    Since the discovery of microRNAs (miRNAs), different approaches have been developed to label, amplify and quantify miRNAs. The TaqMan(®) technology, provided by Applied Biosystems (ABIs), uses a stem-loop reverse transcription primer system to reverse transcribe the RNA and amplify the cDNA. This method is widely used to identify global differences between the expression of 100s of miRNAs across comparative samples. This technique also allows the quantification of the expression of targeted miRNAs to validate observations determined by whole-genome screening or to analyze few specific miRNAs on a large number of samples. Here, we describe the validation of a method published by ABIs on their web site allowing to reverse transcribe and pre-amplify multiple miRNAs and snoRNAs simultaneously. The validation of this protocol was performed on human muscle and plasma samples. Fast and cost efficient, this method achieves an easy and convenient way to screen a relatively large number of miRNAs in parallel

    The Photon Dispersion as an Indicator for New Physics ?

    Full text link
    We first comment on the search for a deviation from the linear photon dispersion relation, in particular based on cosmic photons from Gamma Ray Bursts. Then we consider the non-commutative space as a theoretical concept that could lead to such a deviation, which would be a manifestation of Lorentz Invariance Violation. In particular we review a numerical study of pure U(1) gauge theory in a 4d non-commutative space. Starting from a finite lattice, we explore the phase diagram and the extrapolation to the continuum and infinite volume. These simultaneous limits - taken at fixed non-commutativity - lead to a phase of broken Poincare symmetry, where the photon appears to be IR stable, despite a negative IR divergence to one loop.Comment: 8 pages, 4 figures, talk presented at the VI International Workshop on the Dark Side of the Universe, Leon (Mexico), June 1-6, 2010. References adde

    Mineral Acquisition from Clay by Budongo Forest Chimpanzees

    Get PDF
    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms

    A Comparative Analysis of Genistein and Daidzein in Affecting Lipid Metabolism in Rat Liver

    Get PDF
    Effects of soy isoflavones, genistein and daidzein, on the hepatic gene expression profile and indices for lipid metabolism were compared in rats. In the first experiment (Expt. 1), animals were fed diets containing 2 g/kg of either genistein or daidzein, or a control diet free of isoflavone for 14 days. In the second experiment (Expt. 2), rats were fed diets containing 1 or 2 g/kg of genistein, or an isoflavone-free diet for 16 days. Genistein at a dietary level of 2 g/kg reduced serum triacylglycerol concentrations in both experiments, and serum concentrations of cholesterol in Expt. 2. However, daidzein at 2 g/kg did not decrease serum lipid concentrations in Expt. 1. A DNA microarray analysis in Expt. 1 showed that genistein was stronger than daidzein in affecting gene expression in liver, targeting many genes involved in lipid and carbohydrate metabolism. Detailed analyses indicated that alterations in the expression of genes related to lipogenesis are primarily responsible for the serum lipid-lowering effect of genistein. This notion was supported by analyses of the activity of enzymes involved in lipogenesis in Expt. 2

    Ageing has no effect on the regulation of the ubiquitin proteasome-related genes and proteins following resistance exercise

    Get PDF
    Skeletal muscle atrophy is a critical component of the ageing process. Age-related muscle wasting is due to disrupted muscle protein turnover, a process mediated in part by the ubiquitin proteasome pathway (UPP). Additionally, older subjects have been observed to have an attenuated anabolic response, at both the molecular and physiological levels, following a single-bout of resistance exercise (RE). We investigated the expression levels of the UPP-related genes and proteins involved in muscle protein degradation in 10 older (60-75 years) versus 10 younger (18-30 years) healthy male subjects at basal as well as 2 hours after a single-bout of RE. MURF1, atrogin-1 and FBXO40, their substrate targets PKM2, myogenin, MYOD, MHC and EIF3F as well as MURF1 and atrogin-1 transcriptional regulators FOXO1 and FOXO3 gene and/or protein expression levels were measured via real time PCR and western blotting, respectively. At basal, no age-related difference was observed in the gene/protein levels of atrogin-1, MURF1, myogenin, MYOD and FOXO1/3. However, a decrease in FBXO40 mRNA and protein levels was observed in older subjects, while PKM2 protein was increased in older subjects. In response to RE, MURF1, atrogin-1 and FBXO40 mRNA were upregulated in both the younger and older subjects, with changes observed in protein levels. In conclusion, UPP-related gene/protein expression is comparably regulated in healthy young and old male subjects at basal and following RE. These findings suggest that UPP signalling plays a limited role in the process of age-related muscle wasting. Future studies are required to investigate additional proteolytic mechanisms in conjunction with skeletal muscle protein breakdown measurements following RE in older versus younger subjects

    Oestrogen replacement therapy reduces total plasma homocysteine and enhances genomic DNA methylation in postmenopausal women

    Get PDF
    Although oestrogen replacement therapy (ERT), which can affect the risk of major cancers, has been known to reduce total plasma homocysteine concentrations in postmenopausal women, the mechanisms and subsequent molecular changes have not yet been defined. To investigate the effect of ERT on homocysteine metabolism, thirteen healthy postmenopausal women were enrolled in a double-blind, placebo-controlled, randomized, cross-over study consisting of two 8-week long phases, placebo and conjugated equine oestrogen (CEE; 0·625 mg/d). Concentrations of total plasma homocysteine, vitamin B6and serum folate and vitamin B12were measured by conventional methods. Genomic DNA methylation was measured by a new liquid chromatography/MS method and promoter methylation status of the oestrogen receptor (ER)α,ERβandp16genes was analysed by methylation-specific PCR after bisulfite treatment. The CEE phase demonstrated a significantly decreased mean of total plasma homocysteine concentrations compared with the placebo phase (8·08 μmol/l (6·82–9·39)v.9·29 (7·53–11·35),P < 0·05) but there was no difference in the blood concentrations of the three B vitamins. The CEE phase also showed a significantly increased genomic DNA methylation in peripheral mononuclear cells compared with the placebo phase (2·85 (SD0·12) ng methylcytosine/μg DNAv.2·40 ± (SD0·15)P < 0·05). However, there was no difference in promoter methylation in theERα,ERβandp16genes. This study demonstrates that decreased homocysteinaemia by CEE therapy parallels with increased genomic DNA methylation, suggesting a potential new candidate mechanism by which ERT affects the risk of cancers and a possible new candidate biomarker for the oestrogen-related carcinogenesis through folate-related one-carbon metabolism

    Factor VIII:C concentrate purified from plasma using monoclonal antibodies: human studies

    Get PDF
    Conventional clotting factor concentrates have, until recently, been of intermediate purity, containing less than 1% of the coagulation factor, and greater than 99% extraneous plasma proteins such as fibrinogen, fibronectin, gamma globulins, and traces of many others. We report here the results of a new factor VIII concentrate that is purified from human plasma using a mouse monoclonal antibody to factor VIII:vWF in an affinity chromatography system. The resultant concentrate has an activity of between 3,000 and 5,000 U/mg protein before albumin is added as a stabilizer. Seven patients with severe hemophilia A and no inhibitor who were positive for antibody to human immunodeficiency virus (HIV) have been treated solely with this concentrate for over 24 months. Factor usage in these patients has ranged from 611 U/kg/yr to 2,022 U/kg/yr. These patients have infused approximately once per week on the average, most often for joint hemorrhages. The efficacy of the concentrate is excellent. No allergic reactions have occurred and no factor VIII antibodies have developed. In these seven patients mean CD4 counts stabilized (856 +/- 619 at screen v 778 +/- 686 at 24 months) and there was reversal of skin test anergy. In a comparison group on conventional intermediate purity concentrate chosen retrospectively decreases in mean CD4 cell counts similarly did not occur. However, the number of the comparison patients who were anergic increased over the course of the study. These observations indicate the possibility that more highly purified concentrates may stabilize immune function in HIV seropositive patients

    Simulation model for the study of overhead rail current collector systems dynamics, focused on the design of a new conductor rail

    Get PDF
    Overhead rigid conductor arrangements for current collection for railway traction have some advantages compared to other, more conventional, energy supply systems. They are simple, robust and easily maintained, not to mention their flexibility as to the required height for installation, which makes them particularly suitable for use in subway infrastructures. Nevertheless, due to the increasing speeds of new vehicles running on modern subway lines, a more efficient design is required for this kind of system. In this paper, the authors present a dynamic analysis of overhead conductor rail systems focused on the design of a new conductor profile with a dynamic behaviour superior to that of the system currently in use. This means that either an increase in running speed can be attained, which at present does not exceed 110 km/h, or an increase in the distance between the rigid catenary supports with the ensuing saving in installation costs. This study has been carried out using simulation techniques. The ANSYS programme has been used for the finite element modelling and the SIMPACK programme for the elastic multibody systems analysis

    Expression of microRNAs and target proteins in skeletal muscle of rats selectively bred for high and low running capacity

    Get PDF
    Impairments in mitochondrial function and substrate metabolism are implicated in the etiology of obesity and Type 2 diabetes. MicroRNAs (miRNAs) can degrade mRNA or repress protein translation and have been implicated in the development of such disorders. We used a contrasting rat model system of selectively bred high- (HCR) or low- (LCR) intrinsic running capacity with established differences in metabolic health to investigate the molecular mechanisms through which miRNAs regulate target proteins mediating mitochondrial function and substrate oxidation processes. Quantification of select miRNAs using the rat miFinder miRNA PCR array revealed differential expression of 15 skeletal muscles (musculus tibialis anterior) miRNAs between HCR and LCR rats (14 with higher expression in LCR; P < 0.05). Ingenuity Pathway Analysis predicted these altered miRNAs to collectively target multiple proteins implicated in mitochondrial dysfunction and energy substrate metabolism. Total protein abundance of citrate synthase (CS; miR-19 target) and voltage-dependent anion channel 1 (miR-7a target) were higher in HCR compared with LCR cohorts (~57 and ~26%, respectively; P < 0.05). A negative correlation was observed for miR-19a-3p and CS (r = 0.32, P = 0.015) protein expression. To determine whether miR-19a-3p can regulate CS in vitro, we performed luciferase reporter and transfection assays in C2C12 myotubes. MiR-19a-3p binding to the CS untranslated region did not change luciferase reporter activity; however, miR-19a-3p transfection decreased CS protein expression (∼70%; P < 0.05). The differential miRNA expression targeting proteins implicated in mitochondrial dysfunction and energy substrate metabolism may contribute to the molecular basis, mediating the divergent metabolic health profiles of LCR and HCR rat
    corecore