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Abstract 26 

Impairments in mitochondrial function and substrate metabolism are implicated in the 27 

etiology of obesity and type 2 diabetes. MicroRNAs (miRNAs) can degrade mRNA or 28 

repress protein translation and have been implicated in the development of such disorders. 29 

We used a contrasting rat model system of selectively bred high- (HCR) or low- (LCR) 30 

intrinsic running capacity with established differences in metabolic health to investigate the 31 

molecular mechanisms through which miRNAs regulate target proteins mediating 32 

mitochondrial function and substrate oxidation processes. Quantification of select miRNAs 33 

using the Rat miFinder miRNA PCR array revealed differential expression of 15 skeletal 34 

muscle (m. tibialis anterior) miRNAs between HCR and LCR rats (14 with higher expression 35 

in LCR; P<0.05). Ingenuity Pathway Analysis predicted these altered miRNAs to collectively 36 

target multiple proteins implicated in mitochondrial dysfunction and energy substrate 37 

metabolism. Total protein abundance of citrate synthase (CS; miR-19 target) and voltage-38 

dependent anion channel 1 (miR-7a target) were higher in HCR compared to LCR cohorts 39 

(~57 and ~26%, respectively; P<0.05). A negative correlation was observed for miR-19a-3p 40 

and CS (r =0.59, P=0.02) protein expression in LCR. To determine if miR-19a-3p can 41 

regulate CS in vitro we performed luciferase reporter and transfection assays in C2C12 42 

myotubes. MiR-19a-3p binding to the CS untranslated region did not change luciferase 43 

reporter activity, however miR-19a-3p transfection decreased CS protein expression (~70%; 44 

P<0.05). The differential miRNA expression targeting proteins implicated in mitochondrial 45 

dysfunction and energy substrate metabolism may contribute to the molecular basis 46 

mediating the divergent metabolic health profiles of LCR and HCR rats. 47 

 48 

 49 

Key words: Mitochondrial dysfunction, substrate oxidation, gene expression, citrate synthase  50 
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Introduction 51 

Metabolic disorders such as type 2 diabetes and obesity are characterized by a loss of 52 

‘metabolic plasticity’ where skeletal muscle is unable to effectively transition between lipid- 53 

and carbohydrate-based oxidation in response to the prevailing hormonal mileau (17). 54 

Development of these clinical conditions is determined by a complex interaction of 55 

environmental (lifestyle) and genetic (heritable) factors. Through two-way artificial selection 56 

breeding for treadmill running capacity, intrinsically high capacity runner (HCR) and low 57 

capacity runner (LCR) rats provide an excellent model system for studying the genetic factors 58 

mediating extremes in metabolic health. The HCR rats present with over 8-fold greater 59 

intrinsic aerobic running capacity at generation 28 compared to LCR rats and over 40% of the 60 

variance of the running capacity phenotype due to additive genetic variance (narrow-sense 61 

heritability, h2 = 0.47 ± 0.02 in HCRs and 0.43 ± 0.03 in LCRs) (31). This superior aerobic 62 

capacity and metabolic health profile of HCR rats has, in part, been attributed to an increased 63 

activity of skeletal muscle proteins involved in mitochondrial function and substrate 64 

oxidation (15, 29, 33, 38) compared to the impaired mitochondrial function observed in LCR 65 

animals (34, 38). Thus, investigating the gene-regulatory mechanisms mediating these 66 

processes in a translational animal model system may provide new insight to the molecular 67 

basis controlling metabolic health.  68 

 69 

MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression by binding 70 

to mRNA, subsequently instigating degradation or repressing protein translation (2, 10). 71 

Altered miRNA expression has been implicated in the pathogenesis of several metabolic 72 

conditions including obesity and type 2 diabetes through the regulation of key metabolic 73 

signaling networks involved in glucose and lipid handling, and mitochondrial metabolism (9, 74 

13, 43). Additionally, divergent miRNA expression has recently been characterized in mice 75 
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with inherently high or low physical activity levels as well in human ‘high’ and ‘low’ 76 

responders to resistance exercise (5, 6). These findings suggest that miRNAs may contribute 77 

to the metabolic adaptation profile induced by physical/exercise activity. Whether miRNAs 78 

contribute to the signaling pathways that mediate the intrinsic skeletal muscle metabolic 79 

phenotypes divergent between HCR and LCR rats is unknown. We aimed to determine the 80 

miRNA expression profile and interactions with predicted protein targets implicated in 81 

metabolic health in skeletal muscle from HCR and LCR rats. We hypothesized that HCR and 82 

LCR rats would present divergent miRNA expression profiles in a non-exercise condition, 83 

with HCR rats displaying a miRNA profile that upregulates proteins promoting efficient 84 

substrate oxidation and enhanced mitochondrial function.  85 

 86 

Materials and Methods 87 

Experimental animals 88 

HCR and LCR rats derived from genetically heterogeneous N:NIH stock rats by two-way 89 

artificial selection for maximal treadmill running capacity were used in this study. The 90 

breeding program and aerobic capacity testing procedures have been described in detail 91 

previously (20). Parent rats from generation 27 of selection were bred at the University of 92 

Michigan (Ann Arbor, MI, USA) and their female offspring, HCR (n = 12) and LCR (n = 93 

12), transported to Royal Melbourne Institute of Technology (RMIT) University (Bundoora, 94 

Australia) at ~8 weeks (wk) of age. We have previously reported maximal respiratory 95 

capacity and fasting serum insulin concentrations from this LCR/ HCR generation (REF). 96 

HCRs from later generations (i.e.: 23-27) have shown similar increases in running capacity 97 

and Citrate Synthase activity above LCRs compared to earlier generations (7-11) (16, 34, 39, 98 

41). Rats were allowed 2 wk to acclimate to RMIT facilities as previously described (38). 99 

Neither HCR or LCR rats underwent any form of exercise training during the study period. 100 
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Rats received ad libitum access to water and a standard chow diet whilst being housed under 101 

a 12:12 hour light-dark cycle in a temperature controlled environment (22 °C). Experimental 102 

procedures were approved by the University Committee on Use and Care of Animals at the 103 

University of Michigan and the RMIT University Animal Ethics Committee prior to the onset 104 

of the study.  105 

 106 

Tissue collection 107 

At 11 wk of age, rats were weighed and anesthetized using pentobarbital sodium (60 mg/kg 108 

body wt). The m. tibialis anterior (TA) was immediately excised, freeze clamped in liquid 109 

nitrogen and stored at -80 °C for subsequent analysis.  110 

 111 

RNA extraction and quantification 112 

RNA extraction from skeletal muscle tissue was performed using TRIzol in accordance with 113 

the manufacturer’s instructions and described previously (3). Briefly, approximately 20 mg of 114 

tissue was homogenized in TRIzol and chloroform was added to form an aqueous upper 115 

phase which was precipitated by adding isopropanol. The remaining RNA pellet was washed 116 

and re-suspended in 35 µL’s RNase-free water. RNA was quantified using a NanoDrop 2000 117 

Spectrophotometer (Thermo Fisher Scientific, MA, USA).  118 

 119 

Reverse Transcription (RT) and Real-Time PCR 120 

A miScript II RT Kit (catalogue #218160; Qiagen, Melbourne, Australia) was used to 121 

synthesize cDNA from RNA samples using a BioRad thermal cycler (BioRad Laboratories, 122 

Gladesville, Australia) in accordance with the manufacturer’s instructions. Changes in 123 

miRNA expression were quantified using a Rat miFinder miRNA PCR Array (catalogue 124 

#MIRN-001ZD-24; Qiagen, Melbourne, Australia) in a 96-well RT cycler CFX96 (BioRad 125 
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Laboratories, Gladesville, Australia) for 40 cycles (two steps: 95ºC for 15 s followed by 60ºC 126 

for 30 s). This microarray contained the 84 most abundantly expressed and best characterized 127 

miRNAs present in rats. These miRNA targets can be found via the link: 128 

http://www.sabiosciences.com/mirna_pcr_product/HTML/MIRN-001Z.html This microarray 129 

was selected as many of these miRNAs have been previously shown to regulate targets 130 

shown to have roles in substrate oxidation and mitochondrial function (4, 8, 11, 27) and is 131 

therefore relevant to the HCR and LCR experimental model. Six housekeeping control RNAs 132 

were also measured on this microarray for normalization. The relative amounts of each 133 

miRNA in PCR analysis was normalised to the average of these six (SNORD61, SNORD68, 134 

SNORD72, SNORD95, SNORD96A, RNU6–2) house-keeping genes. There were no 135 

changes in the absolute CT of each individual house-keeping gene or the average between 136 

LCR and HCR cohorts (data not shown). The 2CT
 method of relative quantification was 137 

used to calculate relative amounts of miRNAs (28).  138 

 139 

miRNA target prediction 140 

Protein/mRNA targets of miRNAs differentially expressed (P < 0.05) between HCR and LCR 141 

skeletal muscle were predicted using the microRNA Target Filter function of Qiagen’s 142 

Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.com/ingenuity). 143 

IPA’s microRNA Target Filter incorporates multiple target prediction programs including 144 

TargetScan, TarBase, miRecords and the Ingenuity Knowledge Base. Predicted relationships 145 

were filtered to be either ‘highly predicted’ by algorithms or ‘experimentally observed’ by 146 

previous research. Predicted targets were then filtered to be implicated in ‘Mitochondrial 147 

Dysfunction’ and ‘TCA Cycle II (Eukaryotic)’ in skeletal muscle. These filter criteria were 148 

selected for investigation as LCR rats exhibit impaired skeletal muscle mitochondrial and 149 

TCA cycle function compared to HCR (34, 38). Predicted targets meeting these criteria were 150 

http://www.sabiosciences.com/mirna_pcr_product/HTML/MIRN-001Z.html
http://www.qiagen.com/ingenuity
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identified for 11 of the 15 miRNAs differentially expressed between HCR and LCR rats. A 151 

minimum of one predicted protein/mRNA target was selected for further protein expression 152 

analysis (described subsequently) for each of the 11 differentially expressed miRNAs which 153 

presented protein/mRNA targets implicated in ‘Mitochondrial Dysfunction’ and ‘TCA cycle 154 

II (Eukaryotic)’.  155 

 156 

Western Blotting (skeletal muscle) 157 

Approximately 30 mg of TA was homogenized in ice-cold buffer as previously described 158 

(39). Lysates were centrifuged at 12,000 g for 20 min at 4 °C and the supernatant was 159 

transferred to a sterile microcentrifuge tube and aliquoted to measure protein concentration 160 

using a bicinchoninic acid protein assay (Pierce, Rockford, IL, USA). Lysate was then re-161 

suspended in 4X Laemmli sample buffer with 40 µg of protein loaded onto 4–20% Mini-162 

PROTEAN TGX Stain-Free™ Gels (BioRad Laboratories, Gladesville, Australia). Post 163 

electrophoresis, gels were activated on a Chemidoc according to the manufacturer’s 164 

instructions (BioRad Laboratories, Gladesville, Australia) and then transferred to 165 

polyvinylidine fluoride (PVDF) membranes. After transfer, a stain-free image of the PVDF 166 

membranes (14) for total protein normalization was obtained before membranes were rinsed 167 

briefly in distilled water and blocked with 5% non-fat milk, washed with 10 mM of Tris–168 

HCl, 100 mM of NaCl, and 0.02% Tween 20, and incubated with primary antibody (1:1000) 169 

overnight at 4 °C. Membranes were then incubated with secondary antibody (1:2000), and 170 

proteins were detected via enhanced chemiluminescence (Thermo Fisher, Scoresby, 171 

Australia) and quantified by densitometry (ChemiDoc™ XRS+ System; BioRad 172 

Laboratories, California, USA). HCR and LCR samples were run on the same gel. Primary 173 

antibodies used were polyclonal caspase-3 (CASP3) (#9662), leucine-rich repeat kinase 2 174 

(LRRK2) (#5559) (Cell Signaling, Beverly, MA, USA), polyclonal ATP synthase 175 
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mitochondrial F1 complex assembly factor 1 (ATPAF1) (#ab101518), beta-site APP cleaving 176 

enzyme 1 (BACE1) (#ab2077), Citrate Synthase (CS) (ab96600) and monoclonal Glycerol-3-177 

Phosphate Dehydrogenase 2 (GPD2) (ab188585), MAP2K4 (ab33912), VDAC1 (ab14734) 178 

(Abcam, Cambridge, UK). Volume density of each target protein band was normalized to the 179 

total protein loaded into each lane using stain-free technology (14), with data expressed in 180 

arbitrary units (Figure 7).  181 

 182 

Citrate synthase activity 183 

CS activity was measured to identify whether differences in CS protein abundance were also 184 

accompanied by differences in activity. Skeletal muscle homogenates (n = 10) from freeze 185 

clamped TA muscles (10-20 mg) were prepared over ice in buffer [175 mM KCl and 2 mM 186 

EDTA (pH 7.4), 1:50 or 1:100 dilution]. Homogenates underwent three freeze-thaw cycles 187 

and CS activity was measured according to the method of Srere (37) with modifications as 188 

described previously (38).  189 

 190 

Cell Culture  191 

Stock C2C12 (mouse) myoblasts (ATCC, Manassas, VA, USA) were maintained at 37°C 192 

(95% O2-5% CO2) in high glucose (4.5g/L D-Glucose) culture medium with 2mM glutamine 193 

and 110 mg/L sodium pyruvate (Dulbecco’s modified Eagle’s medium (DMEM)), containing 194 

10% fetal bovine serum (FBS; Life Technologies, Melbourne, Australia). For differentiation 195 

experiments, when cultures approached confluence (~90% confluent), medium was changed 196 

to differentiation medium (DMEM, supplemented with 2% horse serum; Life Technologies, 197 

Melbourne, Australia). Differentiation medium was replaced every 24 h. 198 

 199 

Luciferase Reporter Assay 200 
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C2C12 myoblasts (1-2 x 105/mL) were seeded in black-walled 96-well plates. Twenty-four 201 

hours after seeding, cells were co-transfected with 150 ng pNanoglo2 vector (Promega, 202 

Alexandria, Australia) containing either: no insertion (empty control); the putative rat miR-203 

19a-3p Citrate Synthase target site (including the predicted seed site with 10 base pairs on 204 

either side; Primer sequence- Forward: 5’ 205 

CAGCAGCCTCAtttgcacagattttcaGTGACTCAGAccgcggG 3’, Reverse: 5’ 206 

CTAGCccgcggTCTGAGTCACtgaaaatctgtgcaaaTGAGGCTGCTGAGCT); or its mutant 207 

control, cloned between SacI and NheI downstream of the Nanoluc luciferase (Primer 208 

sequence- Forward 5’ CAGCAGCCTCAcaaccaatcgagaactGTGACTCAGAccgcggG 3’, 209 

Reverse: 5’ CTAGCccgcggTCTGAGTCACagttctcgattggttgTGAGGCTGCTGAGCT 3’; 210 

together with 5 nM miR-19a-3p mimics (mirVana™ miRNA mimic, Life technologies, 211 

Mulgrave, Australia), or an irrelevant miRNA control (miR-99b-5p), using Lipofectamine 212 

2000 (Thermo Fisher, Scoresby, Australia) following the manufacturer's protocol. Four 213 

hours’ post-transfection, the media was removed and replaced with culture medium. Twenty-214 

four hours later, cells were assayed for Firefly and Nanoluc luciferase expression using the 215 

Nano-Glo® Dual-luciferase® Reporter assay kit (Promega, Alexandria, Australia) following 216 

the manufacturer's protocol. The data reported are the results of three independent 217 

experiments performed in six replicates. 218 

 219 

MiRNA transfection 220 

C2C12 myoblasts were cultured (as above) and seeded (1.5 x 105 cells per well) into six-well 221 

plates 24 h before transfection. Myoblasts were transiently transfected with 1nM of miR-19a-222 

3p mimic and a scramble negative control (mirVana™miRNA mimic, Life technologies) 223 

using Lipofectamine 2000 (Thermo Fisher; Scoresby, Australia). The myoblasts were placed 224 

in transfection medium for 4 h. Following this period, the transfection medium was switched 225 
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to culture medium until their harvest. RNA and protein were extracted for RT-PCR gene 226 

expression and Western Blot analysis, respectively. 227 

 228 

Real Time Quantitative PCR and Western Blotting  229 

C2C12 cells were homogenised in TRIZOL and RNA extracted using an RNeasy Mini Kit 230 

(Qiagen, Chadstone, Australia) according to the manufacturer’s directions. First-strand cDNA 231 

synthesis was performed using either the SuperScript® VILO™ cDNA Synthesis kit 232 

(Thermo Fisher, Scoresby, Australia) or TaqMan® MicroRNA Reverse Transcription Kit in a 233 

final reaction volume of 20 µl according to the manufacturer’s directions. Quantification of 234 

mRNA (in duplicate) was performed on a BioRad CFX96 thermal cycler (BioRad, 235 

Gladesville, Australia). Taqman-FAM-labelled primer/probes for citrate synthase (Cat No. 236 

Mm00466043_m1) and miR-19a-3p (Cat No. 000395) were used in a final reaction volume 237 

of 20 µl.  PCR conditions were 2 min at 50 ºC for UNG activation, 10 min at 95 ºC then 40 238 

cycles of 95 ºC for 15 s and 60 ºC for 60 s. β-actin (Cat No. Mm02619580_g1) and 239 

SnoRNA202 (Cat No. 001232) were used as a housekeeping gene to normalize threshold 240 

cycle (CT) values for mRNA and miRNA analyses, respectively. The relative amounts of 241 

mRNAs were calculated using the relative quantification (∆∆CT) method (28). 242 

 243 

For Western Blot analyses, proteins were lysed in a 1 × modified RIPA (Merck Millipore, 244 

North Ryde, Australia) containing 1:1000 protease inhibitor cocktail (Sigma-Aldrich, Castle 245 

Hill, Australia) and 1:100 Halt phosphatase inhibitor cocktail (Thermo Fisher, Scoresby, 246 

Australia) and left on ice for 30 min prior to centrifugation to remove insoluble material. 247 

Lysates containing twenty micrograms of protein were electrophoresed and transferred as 248 

described above with a stain-free image of the PVDF membranes obtained for total protein 249 

normalization. Transfected and scrambled samples from the same time point of collection 250 
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were run on the same gel, and the same polyclonal CS antibody as mentioned above was used 251 

to measure CS protein expression. Volume density of each target protein band was 252 

normalized to the total protein loaded into each lane using stain-free technology (10), with 253 

data expressed in arbitrary units (Figure 7). 254 

 255 

Statistical analyses 256 

A two-tailed unpaired t-test (GraphPad Prism Version 5.03) was used to detect differences 257 

between HCR and LCR groups in miRNA expression, protein abundance, enzyme activity 258 

and for all in vitro analyses of C2C12 cells. All data was subjected to the normality test using 259 

the Shapiro-Wilk test (SigmaPlot 12.0). Linear regression analysis was performed to 260 

determine associations between miRNA species and their predicted protein targets in HCR 261 

and LCR phenotypes (GraphPad Prism Version 5.03). All values are expressed as arbitrary 262 

units (AU) and presented as mean ± standard deviation (SD). Statistical significance was set 263 

at P < 0.05. 264 

 265 

Results 266 

Differential miRNA expression 267 

There was a higher expression in LCR compared to HCR for let-7i-5p (~147% percent 268 

change), -7e-5p (~93%), miR-7a-5p (~35%), -19a-3p (~66%), -24-3p (~37%), -26a-5p 269 

(~58%), -28-5p (~54%), -30a-5p (~67%), -99a-5p (~54%), -181a-5p (~81%), -194-5p 270 

(~39%), -223-3p (~59%), -374-5p (~68%) and -376c-3p (~121%), while miR-103-3p was 271 

more highly expressed (P < 0.05) in HCR than LCR (~31%; Figure 1). All differentially 272 

expressed miRNAs had a mean Ct value < 32. The other 69 miRNAs analyzed were not 273 

significantly different between HCR and LCR rats (Table 1).  274 

 275 
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Bioinformatics analysis of differentially expressed miRNAs 276 

The microRNA Target Filter function of Qiagen’s IPA predicted 5672 mRNAs (2964 in 277 

skeletal muscle) to be targeted by the 15 miRNAs differentially expressed between HCR and 278 

LCR skeletal muscle samples. Eleven of the 15 differentially expressed miRNAs were 279 

predicted to target 19 mRNAs implicated in skeletal muscle mitochondrial dysfunction and 280 

TCA cycle function (Figure 2).  281 

 282 

Protein abundance of miRNA targets 283 

There was a greater protein abundance of CS (~57%) and VDAC1 (~26%) in HCR compared 284 

to LCR rats (P < 0.05; Figure 3A, B). Levels of GPD2 (~28%) were higher in LCR rats (P < 285 

0.05; Figure 3C). There were no changes in the expression of CASP3, LRRK2, ATPAF1, 286 

BACE1, or MAP2K4 between HCR and LCR rats (Figure 3).  287 

 288 

miRNA-protein correlations 289 

A significant negative correlation was observed for miR-19a-3p and CS expression in LCR 290 

rats (r = 0.59, P = 0.02; Figure 4) compared to the HCR (r = XX, P = 0.76, data not shown). 291 

No other correlations between miRNAs and target proteins were found.  292 

 293 

Citrate Synthase Activity 294 

CS activity was significantly greater in HCR relative to LCR rats (~58%; P < 0.05, Figure 5).  295 

 296 

Luciferase reporter assay and miR-19a-3p transfection 297 

There were no changes in Nanoluc luciferase activity in cells co-transfected with the miR-298 

19a-3p mimic and either the full length CS 3’UTR or the predicted miR_19a-3p target site on  299 

CS 3’UTR compared to cells transfected with an irrelevant miRNA (data not shown). 300 
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Transfection of miRNA mimics significantly increased levels of miR-19a-3p expression by 301 

~8,165 % following 4 h transfection (Figure 6A). Citrate synthase mRNA levels were 302 

unchanged following miR-19a-3p transfection (Figure 6B) however there was a ~70% 303 

reduction in CS protein abundance compared to the scrambled negative control 4 h 304 

transfection (Figure 6C).  305 

 306 

Discussion 307 

MicroRNAs have emerged as key regulators of metabolic health through their ability to 308 

repress gene and protein expression (2) and may mediate underlying differences in intrinsic 309 

metabolic function between individuals. Using an animal model of inherited low- or high 310 

intrinsic running capacity that  simultaneously associates with poor or good metabolic health 311 

(21), we report evidence for divergent skeletal muscle miRNA expression profiles . 312 

Specifically, 15 miRNAs with predicted mRNA targets involved in mitochondrial 313 

dysfunction and substrate oxidation were differentially expressed between HCR and LCR 314 

rats. Moreover, we show the abundance of predicted protein targets CS and VDAC1 were 315 

altered between phenotypes in accordance with miRNA expression profile. These findings 316 

suggest a regulatory role for specific skeletal muscle miRNAs of target proteins central to 317 

mitochondrial content and function. 318 

 319 

MicroRNAs are critical regulators of skeletal muscle  metabolism via the negative regulation 320 

of proteins involved in mitochondrial function and energy substrate oxidation (42).We 321 

therefore investigated the molecular events that may influence the diverse transcriptional 322 

differences in mitochondrial function and substrate handling previously reported between 323 

LCR and HCR rats (25, 32, 34, 39). Of the 84 most abundant miRNAs present in rats, there 324 

was a total of 5672 predicted protein/mRNA targets (2964 in skeletal muscle) arising from 325 
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the 15 differentially expressed miRNAs measured by IPA’s microRNA Target Filter, 326 

demonstrating the potentially widespread role for miRNAs in determining the differential 327 

between HCR and LCR intrinsic phenotypes. Eleven of these differentially expressed 328 

miRNAs showed predicted protein targets implicated in mitochondrial dysfunction as 329 

identified by IPA. Numerous studies have attributed the impaired metabolic phenotype of 330 

LCR rats partly to a decrease in the abundance of skeletal muscle proteins critical to 331 

mitochondrial function (15, 34, 38). Therefore, we hypothesised that miRNAs may be a 332 

contributing regulatory mechanism to the divergent mitochondrial features and metabolic 333 

phenotypes previously characterized between HCR and LCR rats.  334 

 335 

The first novel finding of our work was the greater miR-19a-3p expression in LCR compared 336 

to HCR rats (~63% percent change; Figure 1), which has predicted targets involved in 337 

mitochondrial dysfunction and the TCA cycle. We quantified the abundance of these 338 

predicted targets (Beta-site APP cleaving enzyme 1 and Citrate Synthase) to investigate 339 

putative interactions, finding a ~57% decrease in citrate synthase (CS)  protein expression in 340 

TA from LCR rats compared to HCR rats (Figure 3). This decrease in protein expression was 341 

also supported by a reduction in citrate synthase activity (Figure 5). This is in agreement with 342 

previous reports of greater CS abundance and activity in the m. gastrocnemius, m. soleus and 343 

m. extensor digitorum longus of HCR rats relative to LCR rats (12, 15, 30, 33, 34, 38, 40). 344 

CS is a rate limiting enzyme of the TCA cycle located in the mitochondrial matrix and is 345 

often used as a surrogate measure for skeletal muscle mitochondrial content (22). Attenuated 346 

CS activity and abundance has been reported in the skeletal muscle of type 2 diabetic and 347 

obese individuals (18, 19, 36). Here, we report an inverse correlation between miR-19a-3p 348 

and CS expression in muscle from LCR rats, which is the first experimental evidence that 349 

miR-19a-3p may play a role in determining the mitochondrial capacity of skeletal muscle.  350 
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 351 

To confirm whether miR-19a-3p can directly bind and regulate CS transcription, C2C12 352 

myoblasts were co-transfected with a reporter plasmid containing a section of the putative rat 353 

miR-19a-3p Citrate Synthase target site, as well as the miR-19-3p mimic, an irrelevant 354 

miRNA that did not have a predicted binding site on the CS 3’UTR (miR-99b-5p) or no 355 

mimic at all. No reduction in luminescence levels was observed with miR-19a-3p, indicating 356 

that miR-19a-3p did not bind to the CS 3’UTR. CS gene expression data further supports this 357 

as no down-regulation of CS mRNA expression was observed following miR-19a-3p 358 

transfection. In contrast, overexpression of miR-19a-3p in C2C12 myoblasts decreased CS 359 

protein levels 4 h after the onset of transfection when compared to a scrambled control.  This 360 

interaction may be direct and occur at the protein level to inhibit protein translation while 361 

allowing normal mRNA transcription. Alternatively, miR-19a-3p may interact with CS in 362 

area outside the 3’UTR to regulate its mRNA expression (23). Our findings therefore suggest 363 

that miR-19a-3p mediate signalling events controlling energy substrate metabolism and 364 

mitochondrial content, and reveal novel mechanistic information to the regulatory control of 365 

CS expression in skeletal muscle. 366 

 367 

Another major finding from our study was the higher miR-7a expression in LCR rats (~35% 368 

percent change; Figure 1). miR-7a has been implicated in the development of insulin 369 

resistance through its down-regulation of insulin receptor substrate 1 expression and 370 

inhibition of insulin-stimulated Akt phosphorylation and glucose uptake (26). Considering 371 

LCR rats present impaired skeletal muscle insulin signalling and IRS1 phosphorylation 372 

relative to HCR (33), and miR-7a was more highly expressed in LCR rats, it is possible miR-373 

7a may play a role in the attenuated insulin signalling response between these cohorts. Two 374 

protein targets of miR-7a identified by IPA in the ‘Mitochondrial Dysfunction’ filter were 375 
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VDAC1 and BACE1. VDAC1 is an outer mitochondrial membrane protein involved in the 376 

TCA cycle responsible for transporting calcium ions and metabolites including ATP across 377 

the outer mitochondrial membrane (35). VDAC1 deficient mice have been shown to display 378 

impaired glucose tolerance and exercise capacity due to impaired mitochondria-bound 379 

hexokinase activity (1). In our study, the first to compare VDAC1 protein expression between 380 

LCR and HCR rats, we observed significantly lower VDAC1 protein expression in the LCR 381 

cohort. This raises the possibility that miR-7a and VDAC1 may contribute to the divergent 382 

metabolic profiles previously established between LCR and HCR (33). Further work 383 

incorporation miR-7a over-expression analyses are required to better understand the capacity 384 

for it to regulate cellular energy production and metabolism processes. 385 

 386 

Of the other protein targets analysed from the differentially expressed miRNAs between LCR 387 

and HCR cohorts, protein levels of Glycerol-3-Phosphate Dehydrogenase 2 (GPD2) were 388 

higher in LCR compared to HCR rats. GPD2 is a mitochondrial membrane protein centrally 389 

involved in glycolysis and was a predicted target of miR-30a. While increased GPD2 390 

abundance in LCR skeletal muscle was unexpected based on higher miR-30a expression 391 

profile in LCR compared to HCR rats, this higher abundance of GPD2 indicates a greater 392 

reliance on glycolysis for energy production compared to HCR rats. Indeed, previous work 393 

from our laboratory has demonstrated that LCR skeletal muscle is more reliant on 394 

carbohydrate than fat metabolism at rest (33). These findings suggest other signalling 395 

mechanisms or miRNAs further to those investigated here are likely to regulate GPD2 protein 396 

expression. The miR-103-3p was another miRNA that presented higher expression in the 397 

HCR cohort of the differentially expressed miRNAs. Little is known about the role and 398 

validated targets of miR-103 with this the first study to investigate its expression in rat 399 

skeletal muscle. IPA analysis identified BACE1 and CASP3 to be targets of miR-103 within 400 
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the mitochondrial dysfunction filter; however both of these proteins presented similar 401 

expression patterns between cohorts.  Previous research has suggested a role for miR-103 in 402 

myogenic differentiation with increased miR-103 expression observed in myoblasts 403 

following differentiation (7). It is possible that potential increases in myogenic differentiation 404 

regulated by miR-103 may contribute to increased skeletal muscle oxidative capacity in HCR 405 

rats previously identified by our group (32) by promoting increased muscle mass and 406 

represents an avenue for further investigation. 407 

 408 

While there were no other differences in the expression levels of target proteins from other 409 

miRNAs differentially expressed between LCR and HCR rats, many of these miRNAs have 410 

been shown to be implicated in metabolic disorders and the regulation of mitochondrial 411 

function and protein expression. For instance, global and skeletal muscle specific 412 

overexpression of the let-7 family (including the differentially expressed let-7i and -7e 413 

miRNAs investigated in our work)  has been reported to impair glucose tolerance and induce 414 

insulin resistance (9, 44). As transgenic mouse experiments have shown that let-7 targets the 415 

insulin receptor in skeletal muscle (44), it is possible the increased expression of let-7i and -416 

7e in LCR rats may contribute to the previously reported impaired insulin signaling responses 417 

in LCR rats (24, 25, 32). An important limitation of our results is that analysis was only 418 

confined to the tibialis anterior. Differences in type IIb and type IIx fibre types exist between 419 

LCR and HCR cohorts within the Tibialis Anterior (Seifort), thus we cannot rule out that 420 

differences in miRNA expression or citrate synthase activity may be influenced by these 421 

discrepancies in fibre type. Moreover, it is also plausible that other tissues (i.e.: heart) may 422 

impact miRNA expression differently between LCR and HCR compared to our observed 423 

results in the tibialis anterior.  424 

 425 
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In conclusion, we demonstrate highly divergent skeletal muscle miRNA expression profiles 426 

between LCR and HCR rats, targeting multiple predicted protein/mRNA targets involved in 427 

mitochondrial function and substrate metabolism. These findings suggest that altered miRNA 428 

expression may mediate some of the metabolic features intrinsic to HCR and LCR rats and 429 

demonstrate the potential for miRNAs to regulate metabolic function and provide insight into 430 

the gene-regulatory mechanisms modulating intrinsic running capacity and its link to 431 

metabolic health. Further work investigating the effect of exercise in the LCR/HCR model 432 

would provide additional information regarding the regulation of miRNA expression in 433 

skeletal muscle. Future research is also warranted to identify and validate specific gene 434 

targets of miRNAs differentially expressed between HCR and LCR phenotypes and elucidate 435 

their potential regulatory role in metabolic health. Such interactions need to be confirmed in 436 

human skeletal muscle in order to become potential novel targets for mitochondrial-based 437 

therapies for the treatment of metabolic-related conditions aimed at increasing energy 438 

expenditure or enhancing substrate oxidation. 439 

 440 
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Table 1. Relative expression of the 65 miRNAs which were not significantly different (P < 451 

0.05) between TA of HCR and LCR rats as determined by qRT-PCR (n = 9). Values are 452 

means ± SD. 453 

Figure 1. Relative expression of miRNAs differentially expressed (*P < 0.05) in the TA of 454 

generation 27 HCR and LCR rats as determined by qRT-PCR (n = 9). Values are means ± 455 

SD. 456 

Figure 2. Pathway analysis of the 11 differentially expressed miRNAs between HCR and 457 

LCR rats and their 19 protein/mRNA targets within the ‘Mitochondrial Dysfunction’ and 458 

‘TCA Cycle II (Eukaryotic)’ pathways in skeletal muscle as predicted by the microRNA 459 

Target Filter of Qiagen’s Ingenuity Pathway Analysis. Relationships are either ‘highly 460 

predicted’ by algorithms or ‘experimentally observed’ in previous literature.  461 

 462 

Figure 3. A) ATPAF1 (target of miR-26a, miR-28-5p, let-7i-5p and let-7e-5p), B) BACE1 463 

(target of miR-103-3p, miR-374-5p, miR-7a-5p and miR-19a-3p-3p), C) CASP3 (target of 464 

miR-103-rp, let-7e-5p and let-7i-5p), D) CS (target of miR-19a-3p-3p), E) GPD2 (target of 465 

miR-30a-5p), F) LRRK2 (target of miR-19a-3p-3p and miR-181a-5p), G) MAP2K4 (target of 466 

miR-24-3p and miR-374-5p) and H) VDAC1 (target of miR-7a-5p) total protein content in 467 

the TA of HCR and LCR rats (n = 9). Values are arbitrary units expressed relative to Stain-468 

Free total protein loading. (*) Significantly different (P < 0.05)  between LCR and HCR 469 

cohorts. Values are means ± SD. 470 

 471 

Figure 4. Correlation analysis between miR-19a-3p and its predicted protein target CS in the 472 

TA of LCR rats (n=9).  473 

 474 
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Figure 5. CS activity in the TA of HCR and LCR rats (n = 10). Values are means ± SD (*P < 475 

0.05). 476 

Figure 6. A) MicroRNA expression levels of miR-19a-3p normalized to SnoRNA202 after 477 

transfection in C2C12 cells; B) mRNA and C) protein expression of the miR-19a-3p 478 

predicted target CS following transfection (*P < 0.05). 479 

 480 

Figure 7. Representative stain-free image of total protein loading for A) TA of HCR and 481 

LCR rats; and B) C2C12 cells following miR-19-3p transfection. 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 
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