47 research outputs found

    Dynamics of the spontaneous breakdown of superhydrophobicity

    Get PDF
    Drops deposited on rough and hydrophobic surfaces can stay suspended with gas pockets underneath the liquid, then showing very low hydrodynamic resistance. When this superhydrophobic state breaks down, the subsequent wetting process can show different dynamical properties. A suitable choice of the geometry can make the wetting front propagate in a stepwise manner leading to {\it square-shaped} wetted area: the front propagation is slow and the patterned surface fills by rows through a {\it zipping} mechanism. The multiple time scale scenario of this wetting process is experimentally characterized and compared to numerical simulations.Comment: 7 pages, 5 figure

    Life-threatening infections in children in Europe (the EUCLIDS Project): a prospective cohort study

    Get PDF
    Background: Sepsis and severe focal infections represent a substantial disease burden in children admitted to hospital. We aimed to understand the burden of disease and outcomes in children with life-threatening bacterial infections in Europe. Methods: The European Union Childhood Life-threatening Infectious Disease Study (EUCLIDS) was a prospective, multicentre, cohort study done in six countries in Europe. Patients aged 1 month to 18 years with sepsis (or suspected sepsis) or severe focal infections, admitted to 98 participating hospitals in the UK, Austria, Germany, Lithuania, Spain, and the Netherlands were prospectively recruited between July 1, 2012, and Dec 31, 2015. To assess disease burden and outcomes, we collected demographic and clinical data using a secured web-based platform and obtained microbiological data using locally available clinical diagnostic procedures. Findings: 2844 patients were recruited and included in the analysis. 1512 (53·2%) of 2841 patients were male and median age was 39·1 months (IQR 12·4–93·9). 1229 (43·2%) patients had sepsis and 1615 (56·8%) had severe focal infections. Patients diagnosed with sepsis had a median age of 27·6 months (IQR 9·0–80·2), whereas those diagnosed with severe focal infections had a median age of 46·5 months (15·8–100·4; p<0·0001). Of 2844 patients in the entire cohort, the main clinical syndromes were pneumonia (511 [18·0%] patients), CNS infection (469 [16·5%]), and skin and soft tissue infection (247 [8·7%]). The causal microorganism was identified in 1359 (47·8%) children, with the most prevalent ones being Neisseria meningitidis (in 259 [9·1%] patients), followed by Staphylococcus aureus (in 222 [7·8%]), Streptococcus pneumoniae (in 219 [7·7%]), and group A streptococcus (in 162 [5·7%]). 1070 (37·6%) patients required admission to a paediatric intensive care unit. Of 2469 patients with outcome data, 57 (2·2%) deaths occurred: seven were in patients with severe focal infections and 50 in those with sepsis. Interpretation: Mortality in children admitted to hospital for sepsis or severe focal infections is low in Europe. The disease burden is mainly in children younger than 5 years and is largely due to vaccine-preventable meningococcal and pneumococcal infections. Despite the availability and application of clinical procedures for microbiological diagnosis, the causative organism remained unidentified in approximately 50% of patients

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar

    Acoustophoresis of monodisperse oil droplets in water:Effect of symmetry breaking and non-resonance operation on oil trapping behavior

    No full text
    Acoustic manipulation of particles in microchannels has recently gained much attention. Ultrasonic standing wave (USW) separation of oil droplets or particles is an established technology for microscale applications. Acoustofluidic devices are normally operated at optimized conditions, namely, resonant frequency, to minimize power consumption. It has been recently shown that symmetry breaking is needed to obtain efficient conditions for acoustic particle trapping. In this work, we study the acoustophoretic behavior of monodisperse oil droplets (silicone oil and hexadecane) in water in the microfluidic chip operating at a non-resonant frequency and an off-center placement of the transducer. Finite element-based computer simulations are further performed to investigate the influence of these conditions on the acoustic pressure distribution and oil trapping behavior. Via investigating the Gor’kov potential, we obtained an overlap between the trapping patterns obtained in experiments and simulations. We demonstrate that an off-center placement of the transducer and driving the transducer at a non-resonant frequency can still lead to predictable behavior of particles in acoustofluidics. This is relevant to applications in which the theoretical resonant frequency cannot be achieved, e.g., manipulation of biological matter within living tissues

    Confined Electroconvective Vortices at Structured Ion Exchange Membranes

    Get PDF
    In this paper, we investigate electroconvective ion transport at cation exchange membranes with different geometry square-wave structures (line undulations) experimentally and numerically. Electroconvective microvortices are induced by strong concentration polarization once a threshold potential difference is applied. The applied potential required to start and sustain electroconvection is strongly affected by the geometry of the membrane. A reduction in the resistance of approximately 50% can be obtained when the structure size is similar to the mixing layer (ML) thickness, resulting in confined vortices with less lateral motion compared to the case of flat membranes. From electrical, flow, and concentration measurements, ion migration, advection, and diffusion are quantified, respectively. Advection and migration are dominant in the vortex ML, whereas diffusion and migration are dominant in the stagnant diffusion layer. Numerical simulations, based on Poisson–Nernst–Planck and Navier–Stokes equations, show similar ion transport and flow characteristics, highlighting the importance of membrane topology on the resulting electrokinetic and electrohydrodynamic behavior
    corecore