33 research outputs found

    Released micromachined beams utilizing laterally uniform porosity porous silicon

    Get PDF
    © 2014, Sun et al.; licensee Springer. Abstract: Suspended micromachined porous silicon beams with laterally uniform porosity are reported, which have been fabricated using standard photolithography processes designed for compatibility with complementary metal-oxide-semiconductor (CMOS) processes. Anodization, annealing, reactive ion etching, repeated photolithography, lift off and electropolishing processes were used to release patterned porous silicon microbeams on a Si substrate. This is the first time that micromachined, suspended PS microbeams have been demonstrated with laterally uniform porosity, well-defined anchors and flat surfaces. PACS: 81.16.-c; 81.16.Nd; 81.16.R

    Chemical (C, N, S, black carbon, soot and char) and stable carbon isotope composition of street dusts from a major West African metropolis: Implications for source apportionment and exposure

    No full text
    Street dust is a major source of pollution and exposure of residents of West Africa to toxic chemicals. There is however, limited knowledge about the chemical composition and sources of street dust in urban areas of sub-Saharan Africa. The total carbon (TC), nitrogen (TN), sulfur (TS) and the stable carbon isotope ratios (delta C-13) contents of street dust sampled from 25 sites distributed across Kumasi (a metropolis in Ghana with a population of ca.2 million) were determined. In addition, black carbon (BC) and their subunits (soot and char) in these samples were also determined. The concentrations of TC, TN and TS in the dusts were 5-71 mg g(-1), 0.3-4.3 mg g(-1) and 0.2-1.4 mg g(-1), respectively. The concentrations of TC, TN and TS were higher than at the background site of the metropolis by a factor of 5.1 (range: 1.7-12), 3.9 (1.1-13) and 2.8 (0.7-5), respectively. The BC, char and soot concentrations in these samples averaged 1.6 mg g(-1) (0.13-4.4), 1.2 mg g(-1) (0.08-3.7) and 0.36 mg g(-1) (0.05-1.5), respectively. The concentrations of BC, char and soot in the street dust were higher than in the background location by factors of 5 (range: 0.8-13), 6 (0.7-17) and 3 (0.5-12), respectively. The TC, TN, TS, BC, soot and char concentrations were positively correlated with each other and with polycyclic aromatic compounds (PAHs, oxygenated PAHs and azaarenes from a previous study), indicating their common origin and fate. The delta C-13 values ranged from -27 to -24 [parts per thousand], with more polluted sites being more depleted in C-13. Based on the chemical composition of the street dusts, the 25 sites could be clustered into four groups by hierarchical cluster analysis which reflect areas of varying anthropogenic influence and, accordingly, exposure to hazardous chemicals

    POPs in a major conurbation in Turkey: ambient air concentrations, seasonal variation, inhalation and dermal exposure, and associated carcinogenic risks

    Get PDF
    Semi-volatile organic compounds were monitored over a whole year, by collection of gas and particle phases every sixth day at a suburban site in Izmir, Turkey. Annual mean concentrations of 32 polychlorinated biphenyls (∑32PCBs) and 14 polycyclic aromatic hydrocarbons (∑14PAHs) were 348 pg/m3 and 36 ng/m3, respectively, while it was 273 pg/m3 for endosulfan, the dominant compound among 23 organochlorine pesticides (OCPs). Monte Carlo simulation was applied to the USEPA exposure-risk models for the estimation of the population exposure and carcinogenic risk probability distributions for heating and non-heating periods. The estimated population risks associated with dermal contact and inhalation routes to ∑32PCBs, ∑14PAHs, and some of the targeted OCPs (α-hexachlorocyclohexane (α-HCH), ÎČ-hexachlorocyclohexane (ÎČ-HCH), heptachlor, heptachlor epoxide, α-chlordane (α-CHL), Îł-chlordane (Îł-CHL), and p,pâ€Č-dichlorodiphenyltrichloroethane (p,pâ€Č-DDT)) were in the ranges of 1.86 × 10−16–7.29 × 10−9 and 1.38 × 10−10–4.07 × 10−6, respectively. The inhalation 95th percentile risks for ∑32PCBs, ∑14PAHs, and OCPs were about 6, 3, and 4–7 orders of magnitude higher than those of dermal route, respectively. The 95th percentile inhalation risk for ∑32PCBs and OCPs in the non-heating period were 1.8- and 1.2–4.6 folds higher than in the heating period, respectively. In contrast, the 95th percentile risk levels for ∑14PAHs in the heating period were 4.3 times greater than that of non-heating period for inhalation, respectively. While risk levels associated with exposure to PCBs and OCPs did not exceed the acceptable level of 1 × 10−6, it was exceeded for 47 % of the population associated with inhalation of PAHs with a maximum value of about 4 × 10−6

    Polychlorinated biphenyls (PCBs) as sentinels for the elucidation of Arctic environmental change processes:a comprehensive review combined with ArcRisk project results

    Get PDF
    Abstract Polychlorinated biphenyls (PCBs) can be used as chemical sentinels for the assessment of anthropogenic influences on Arctic environmental change. We present an overview of studies on PCBs in the Arctic and combine these with the findings from ArcRisk—a major European Union-funded project aimed at examining the effects of climate change on the transport of contaminants to and their behaviour of in the Arctic—to provide a case study on the behaviour and impact of PCBs over time in the Arctic. PCBs in the Arctic have shown declining trends in the environment over the last few decades. Atmospheric long-range transport from secondary and primary sources is the major input of PCBs to the Arctic region. Modelling of the atmospheric PCB composition and behaviour showed some increases in environmental concentrations in a warmer Arctic, but the general decline in PCB levels is still the most prominent feature. ‘Within-Arctic’ processing of PCBs will be affected by climate change-related processes such as changing wet deposition. These in turn will influence biological exposure and uptake of PCBs. The pan-Arctic rivers draining large Arctic/sub-Arctic catchments provide a significant source of PCBs to the Arctic Ocean, although changes in hydrology/sediment transport combined with a changing marine environment remain areas of uncertainty with regard to PCB fate. Indirect effects of climate change on human exposure, such as a changing diet will influence and possibly reduce PCB exposure for indigenous peoples. Body burdens of PCBs have declined since the 1980s and are predicted to decline further
    corecore