181 research outputs found

    Efficacy and tolerability of an endogenous metabolic modulator (AXA1125) in fatigue-predominant long COVID: a single-centre, double-blind, randomised controlled phase 2a pilot study

    Get PDF
    Background ‘Long COVID’ describes persistent symptoms, commonly fatigue, lasting beyond 12 weeks following SARS-CoV-2 infection. Potential causes include reduced mitochondrial function and cellular bioenergetics. AXA1125 has previously increased β-oxidation and improved bioenergetics in preclinical models along with certain clinical conditions, and therefore may reduce fatigue associated with Long COVID. We aimed to assess the efficacy, safety and tolerability of AXA1125 in Long COVID. Methods Patients with fatigue-dominant Long COVID were recruited in this single-centre, double-blind, randomised controlled phase 2a pilot study completed in the UK. Patients were randomly assigned (1:1) using an Interactive Response Technology to receive either AXA1125 or matching placebo in a clinical-based setting. Each dose (33.9 g) of AXA1125 or placebo was administered orally in a liquid suspension twice daily for four weeks with a two-week follow-up period. The primary endpoint was the mean change from baseline to day 28 in the phosphocreatine (PCr) recovery rate following moderate exercise, assessed by 31P-magnetic resonance spectroscopy (MRS). All patients were included in the intention to treat analysis. This trial was registered at ClinicalTrials.gov, NCT05152849. Findings Between December 15th 2021, and May 23th 2022, 60 participants were screened, and 41 participants were randomised and included in the final analysis. Changes in skeletal muscle phosphocreatine recovery time constant (τPCr) and 6-min walk test (6MWT) did not significantly differ between treatment (n = 21) and placebo group (n = 20). However, treatment with AXA1125 was associated with significantly reduced day 28 Chalder Fatigue Questionnaire [CFQ-11] fatigue score when compared with placebo (least squares mean difference [LSMD] −4.30, 95% confidence interval (95% CI) −7.14, −1.47; P = 0.0039). Eleven (52.4%, AXA1125) and four (20.0%, placebo) patients reported treatment-emergent adverse events; none were serious or led to treatment discontinuation. Interpretation Although treatment with AXA1125 did not improve the primary endpoint (τPCr-measure of mitochondrial respiration), when compared to placebo, there were significant improvements in fatigue-based symptoms among patients living with Long COVID following a four-week treatment period. Further multicentre studies are needed to validate our findings in a larger cohort of patients with fatigue-dominant Long COVID. Funding Axcella Therapeutics

    Efficacy and tolerability of an endogenous metabolic modulator (AXA1125) in fatigue-predominant long COVID: a single-centre, double-blind, randomised controlled phase 2a pilot study

    Get PDF
    Background: ‘Long COVID’ describes persistent symptoms, commonly fatigue, lasting beyond 12 weeks following SARS-CoV-2 infection. Potential causes include reduced mitochondrial function and cellular bioenergetics. AXA1125 has previously increased β-oxidation and improved bioenergetics in preclinical models along with certain clinical conditions, and therefore may reduce fatigue associated with Long COVID. We aimed to assess the efficacy, safety and tolerability of AXA1125 in Long COVID. / Methods: Patients with fatigue dominant Long COVID were recruited in this single-centre, double-blind, randomised controlled phase 2a pilot study completed in the UK. Patients were randomly assigned (1:1) using an Interactive Response Technology to receive either AXA1125 or matching placebo in a clinical based setting. Each dose (33.9 g) of AXA1125 or placebo was administered orally in a liquid suspension twice daily for four weeks with a two week follow-up period. The primary endpoint was the mean change from baseline to day 28 in the phosphocreatine (PCr) recovery rate following moderate exercise, assessed by 31P-magnetic resonance spectroscopy (MRS). All patients were included in the intention to treat analysis. This trial was registered at ClinicalTrials.gov, NCT05152849. / Findings: Between December 15th 2021, and May 23th 2022, 60 participants were screened and 41 participants were randomised and included in the final analysis. Changes in skeletal muscle phosphocreatine recovery time constant (τPCr) and 6-min walk test (6MWT) did not significantly differ between treatment (n = 21) and placebo group (n = 20). However, treatment with AXA1125 was associated with significantly reduced day 28 Chalder Fatigue Questionnaire [CFQ-11] fatigue score when compared with placebo (least squares mean difference [LSMD] −4.30, 95% confidence interval (95% CI) −7.14, −1.47; P = 0.0039). Eleven (52.4%, AXA1125) and four (20.0%, placebo) patients reported treatment-emergent adverse events; none were serious, or led to treatment discontinuation. / Interpretation: Although treatment with AXA1125 did not improve the primary endpoint (τPCr-measure of mitochondrial respiration), when compared to placebo, there was a significant improvement in fatigue-based symptoms among patients living with Long COVID following a four week treatment period. Further multicentre studies are needed to validate our findings in a larger cohort of patients with fatigue-dominant Long COVID. / Funding: Axcella Therapeutics

    Oncogenic KRAS is not necessary for Wnt signalling activation in APC-associated FAP adenomas

    Full text link
    Recent studies have suggested that APC loss alone may be insufficient to promote aberrant Wnt/Β-catenin signalling. Our aim was to comprehensively characterize Wnt signalling components in a set of APC-associated familial adenomatous polyposis (FAP) tumours. Sixty adenomas from six FAP patients with known pathogenic APC mutations were included. Somatic APC and KRAS mutations, Β-catenin immunostaining, and qRT-PCR of APC, MYC, AXIN2 and SFRP1 were analysed. Array-comparative genomic hybridization (aCGH) was also assessed in 26 FAP adenomas and 24 paired adenoma–carcinoma samples. A somatic APC alteration was present in 15 adenomas (LOH in 11 and four point mutations). KRAS mutations were detected in 10% of the cases. APC mRNA was overexpressed in adenomas. MYC and AXIN2 were also overexpressed, with significant intra-case heterogeneity. Increased cytoplasmic and/or nuclear Β-catenin staining was seen in 94% and 80% of the adenomas. Β-Catenin nuclear staining was strongly associated with MYC levels ( p value 0.03) but not with KRAS mutations. Copy number aberrations were rare. However, the recurrent chromosome changes observed more frequently contained Wnt pathway genes ( p value 0.012). Based on Β-catenin staining and Wnt pathway target genes alterations the Wnt pathway appears to be constitutively activated in all APC-FAP tumours, with alterations occurring both upstream and downstream of APC. Wnt aberrations are present at both the DNA and the RNA level. Somatic profiling of APC-FAP tumours provides new insights into the role of APC in tumourigenesis. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69187/1/2685_ftp.pd

    Investigation of pathogenic mechanisms in multiple colorectal adenoma patients without germline APC or MYH/MUTYH mutations

    Get PDF
    Patients with multiple (5–100) colorectal adenomas (MCRAs) often have no germline mutation in known predisposition genes, but probably have a genetic origin. We collected a set of 25 MCRA patients with no detectable germline mutation in APC, MYH/MUTYH or the mismatch repair genes. Extracolonic tumours were absent in these cases. No vertical transmission of the MCRA phenotype was found. Based on the precedent of MYH-associated polyposis (MAP), we searched for a mutational signature in 241 adenomatous polyps from our MCRA cases. Somatic mutation frequencies and spectra at APC, K-ras and BRAF were, however, similar to those in sporadic colorectal adenomas. Our data suggest that the genetic pathway of tumorigenesis in the MCRA patients' tumours is very similar to the classical pathway in sporadic adenomas. In sharp contrast to MAP tumours, we did not find evidence of a specific mutational signature in any individual patient or in the overall set of MCRA cases. These results suggest that hypermutation of APC does not cause our patients' disease and strongly suggests that MAP is not a paradigm for the remaining MCRA patients. Our MCRA patients' colons showed no evidence of microadenomas, unlike in MAP and familial adenomatous polyposis (FAP). However, nuclear β-catenin expression was significantly greater in MCRA patients' tumours than in sporadic adenomas. We suggest that, at least in some cases, the MCRA phenotype results from germline variation that acts subsequent to tumour initiation, perhaps by causing more rapid or more likely progression from microadenoma to macroadenoma

    Single nucleotide polymorphisms of the APC gene and colorectal cancer risk: a case-control study in Taiwan

    Get PDF
    BACKGROUND: Colorectal cancer (CRC), which has become especially prevalent in developed countries, is currently the third highest cause of cancer mortality in Taiwan. Mutation of the adenomatous polyposis coli (APC) gene, a tumour suppressor, is thought to be an early event in colorectal tumourigenesis. To date, however, no large-scale screening for APC gene variants in Chinese subjects has been performed. The present study was undertaken to identify APC gene variants that are significantly associated with the occurrence of CRC in Taiwanese subjects. METHODS: In order to compare the genotype distribution of variant sites, the full-length APC genes of 74 healthy individuals and 80 CRC patients were sequenced. RESULTS: Among the 154 Taiwanese subjects examined in this study, three new mutations, but no previously reported mutations, were found. One deletion at codon 460 leading to a frameshift and two missense mutations resulting in p.V1125A and p.S1126R substitutions were identified. Additionally, three high risk genotypes associated with three single nucleotide polymorphisms and one low risk genotype at codon 1822 were identified. CONCLUSION: The findings of this case-control study are consistent with the proposal that Taiwanese subjects differ from other subjects with respect to phenotypic presentation of APC and CRC risk

    Assessment of Cardiac Energy Metabolism, Function, and Physiology in Patients With Heart Failure Taking Empagliflozin : The Randomized, Controlled EMPA-VISION Trial

    Get PDF
    Acknowledgments The authors express their gratitude toward the Oxford cardiovascular magnetic resonance nursing team, specifically Judith DeLos Santos, Catherine Krasopoulos, Marion Galley, and Claudia Nunes; and the diabetes trials unit team, particularly Irene Kennedy, for her organization skills. The authors also thank the team of the computed tomography suite at the Manor Hospital Oxford as well as all patients who participated in this trial. Drs Holman and Neubauer are Emeritus National Institute for Health Research senior investigators. The views expressed are those of the author(s) and not necessarily those of the National Health Service, National Institute for Health and Care Research, or Department of Health. Sources of Funding Boehringer Ingelheim is the sponsor of the EMPA-VISION study and was involved in early stages of its study design. Boehringer Ingelheim employees (Drs Lee and Massey) also supported preparation of this manuscript. Dr Neubauer acknowledges support from the Oxford British Heart Foundation Centre of Research Excellence. Drs Holman and Neubauer were supported by the Oxford National Institute for Health Research Biomedical Research Centre. Drs Rodgers and Valkovič are funded by Sir Henry Dale Fellowships from the Wellcome Trust and the Royal Society [098436/Z/12/B and 221805/Z/20/Z, respectively]. Dr Valkovič also gratefully acknowledges support of the Slovak Grant Agencies VEGA (Vedecká grantová agentúra) [2/0003/20] and APVV (Slovak Research and Development Agency) [No. 19–0032]. Dr Miller acknowledges support from the Novo Foundation (NNF21OC0068683).Peer reviewedPublisher PD

    COL11A1 in FAP polyps and in sporadic colorectal tumors

    Get PDF
    BACKGROUND: We previously reported that the α-1 chain of type 11 collagen (COL11A1), not normally expressed in the colon, was up-regulated in stromal fibroblasts in most sporadic colorectal carcinomas. Patients with germline mutations in the APC gene show, besides colonic polyposis, symptoms of stromal fibroblast involvement, which could be related to COL11A1 expression. Most colorectal carcinomas are suggested to be a result of an activated Wnt- pathway, most often involving an inactivation of the APC gene or activation of β-catenin. METHODS: We used normal and polyp tissue samples from one FAP patient and a set of 37 sporadic colorectal carcinomas to find out if the up-regulation of COL11A1 was associated with an active APC/β-catenin pathway. RESULTS: In this study we found a statistically significant difference in COL11A1 expression between normal tissue and adenomas from one FAP patient, and all adenomas gave evidence for an active APC/β-catenin pathway. An active Wnt pathway has been suggested to involve stromal expression of WISP-1. We found a strong correlation between WISP-1 and COL11A1 expression in sporadic carcinomas. CONCLUSIONS: Our results suggest that expression of COL11A1 in colorectal tumors could be associated with the APC/β-catenin pathway in FAP and sporadic colorectal cancer

    A mitotic recombination map proximal to the APC locus on chromosome 5q and assessment of influences on colorectal cancer risk

    Get PDF
    Mitotic recombination is important for inactivating tumour suppressor genes by copy-neutral loss of heterozygosity (LOH). Although meiotic recombination maps are plentiful, little is known about mitotic recombination. The APC gene (chr5q21) is mutated in most colorectal tumours and its usual mode of LOH is mitotic recombination.

    Cross-talk between Hippo and Wnt signalling pathways in intestinal crypts : insights from an agent-based model

    Get PDF
    Intestinal crypts are responsible for the total cell renewal of the lining of the intestines; this turnover is governed by the interplay between signalling pathways and the cell cycle. The role of Wnt signalling in cell proliferation and differentiation in the intestinal crypt has been extensively studied, with increased signalling found towards the lower regions of the crypt. Recent studies have shown that the Wnt signalling gradient found within the crypt may arise as a result of division-based spreading from a Wnt ‘reservoir’ at the crypt base. The discovery of the Hippo pathway’s involvement in maintaining crypt homeostasis is more recent; a mechanistic understanding of Hippo pathway dynamics, and its possible cross-talk with the Wnt pathway, remains lacking. To explore how the interplay between these pathways may control crypt homeostasis, we extended an ordinary differential equation model of the Wnt signalling pathway to include a phenomenological description of Hippo signalling in single cells, and then coupled it to a cell-based description of cell movement, proliferation and contact inhibition in agent-based simulations. Furthermore, we compared an imposed Wnt gradient with a division-based Wnt gradient model. Our results suggest that Hippo signalling affects the Wnt pathway by reducing the presence of free cytoplasmic β-catenin, causing cell cycle arrest. We also show that a division-based spreading of Wnt can form a Wnt gradient, resulting in proliferative dynamics comparable to imposed-gradient models. Finally, a simulated APC double mutant, with misregulated Wnt and Hippo signalling activity, is predicted to cause monoclonal conversion of the crypt
    corecore