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Abstract
Mutation of tumor suppressor gene Adenomatous polyposis coli (APC) is an initiating step in
most colon cancers. This review summarizes Apc models in mice and rats, with particular
concentration on those most recently developed, phenotypic variation among different models, and
genotype/ phenotype correlations.
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Adenomatous polyposis coli (APC)
Adenomatous polyposis coli (APC) is a critical tumor suppressor gene in the colon. Humans
with germline APC mutation develop hundreds to thousands of colon tumors in their first
few decades of life, a condition referred to as familial adenomatous polyposis (FAP). These
tumors are pre-cancerous, and prophylactic colon removal is recommended to avoid
progression to invasive carcinoma that otherwise would occur in FAP patients by age 39, on
average [1–4]. Notably, APC mutation is also an early if not the first step in the
development of more than 80% of all sporadic colorectal cancers [5, 6]. In both inherited
and sporadic colorectal cancer, APC mutations result in premature truncation of the large
(2843 amino acid) APC protein, eliminating roughly half to three-quarters of the C-terminal
portion [7, 8]. APC interacts with multiple proteins and participates in diverse cellular
processes including proliferation, differentiation, apoptosis, adhesion, and migration. One of
the first reported APC functions is as a Wnt-signal antagonist. In this capacity, APC forms a
complex with GSK3β, axin, and other proteins to mediate phosphorylation and eventual
proteasomal destruction of the oncoprotein β-catenin [7, 9]. Animal models have been
generated to study APC functions in development and tumorigenesis including Drosophila,
C.elegans, zebrafish, mouse, rat and pig.

© 2012 Elsevier B.V. All rights reserved.

Corresponding author: Kristi L. Neufeld, 7049 Haworth Hall, 1200 Sunnyside Ave., University of Kansas, Lawrence, KS 66045;
phone (785)864-5079; fax (785)864-5294; klneuf@ku.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Biochim Biophys Acta. Author manuscript; available in PMC 2014 August 01.

Published in final edited form as:
Biochim Biophys Acta. 2013 August ; 1836(1): 80–89. doi:10.1016/j.bbcan.2013.01.001.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213421472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Apc mouse models
With similar physiological and pathological processes to humans, [10] mice are particularly
well-suited to study Apc functions in intestinal homeostasis, tumor suppression, and
vertebrate development [11]. All characterized motifs in human APC are conserved in
murine Apc and the proteins are 87.9% identical and 91.9% similar at the amino acid level
[12]. Furthermore, intestinal tumors from Apc mutant mice displayed expression signatures
similar to that in tumors from humans with germline APC mutations [13]. Apc mouse
models can be divided into two broad categories: mice with a germline Apc mutation that
results in protein truncation, alteration, or reduced expression in all tissues and mice with
conditional Apc alterations only in a specific tissue at a particular stage of development.
Figure 1 shows the structural domains of Apc and germline mutations in mice. Here, we
compare and contrast the published phenotypes of the 43 different Apc mouse models
described to date, with particular emphasis on studies from the past several years.

ApcMin/+

The Multiple intestinal neoplasia (Min) mouse was identified in an ethylnitrosourea (ENU)
mutagenesis screen and has a nonsense mutation that results in truncation of Apc at codon
851 [14, 15]. Since its first description in 1990, the ApcMin model has been used extensively
to study Apc functions in suppression of intestinal tumorigenesis and to investigate tumor
prevention strategies. Mice homozygous for ApcMin die early in embryonic development. In
the C57Bl/6 background adult ApcMin/+ mice live for ~120 days and display both intestinal
(100% penetrant) and extra-intestinal phenotypes [12, 16–18]. ApcMin/+ mice typically
develop between 20–100 polyps in their gastrointestinal tract [17]. Differences in diet, flora,
genetic background, and genetic modifiers can result in even greater variability in the polyp
multiplicity [19–21]. The vast majority of ApcMin/+ polyps are in the small intestine, with a
few developing in the colon and even fewer in the stomach [16, 17]. Histologically, most
tumors in ApcMin/+ mice are benign adenomas: polypoidal, sessile, or papillary in nature,
with limited dysplasia and atypia. Although these polyps can reach 8 mm in diameter,
malignant changes are not typically seen. However, in older ApcMin/+ mice, polyps express
molecular markers of invasiveness seen in malignant tumors, [21] and areas with limited
invasion and carcinoma in situ have been observed [17]. Furthermore, ApcMin/+ mice in
certain genetic backgrounds live longer and develop fewer polyps than do mice in the B6
background, but show malignant changes and local metastasis to lymph nodes [22]. Likely
the short life span of ApcMin/+ mice limits the accumulation of other genetic mutations in
intestinal tumors that are required for progression to invasive carcinoma [22].

In both ApcMin/+ mice and FAP patients, mutation of the wild-type Apc allele (or ‘second
hit’) is required for adenoma formation [23]. Genetic and environmental factors that raise
mutation rate increase polyp multiplicity in ApcMin/+ mice [24–27]. However, the nature and
predicted mechanism of this second mutation is different in ApcMin/+ mice and in human
FAP patients. In humans with FAP, the somatic APC mutation is frequently an independent
protein-truncating point mutation. LOH can also occur, presumably by mitotic
recombination and particularly in adenomas from the distal bowel when the germline
mutation truncates APC at or near codon 1309 [28]. In contrast, most of adenomas from
ApcMin mice show LOH at the Apc locus and the most recent evidence supports loss of the
wild-type Apc allele with locus diploidy as the mechanism of this LOH [23, 29]. Whether
this LOH is the result of somatic recombination or loss and duplication of the entire
chromosome 18 (the location of Apc) is still not completely resolved. Evidence for somatic
recombination as the underlying mechanism of this LOH came from analysis of ApcMin/+

mice with a Robertsonian translocation, fusing acrocentric chromosomes 7 and 18 (Rb9
fusion). When placed in trans, cis, or in homozygous distribution with the ApcMin allele, the
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Rb9 chromosome was associated with reduced tumor burden in ApcMin/+ mice [29].
Because mitotic recombination is compromised in Rb9 mice, it was concluded that somatic
recombination is the mechanism of LOH required for polyp formation. However, there is a
chance that the Rb9 chromosome also affects chromosomal segregation and thus, complete
loss and duplication of chromosome 18 in adenomas from ApcMin/+ mice without the Rb9
chromosome is still a possibility.

An elaborate experiment that assessed polyp formation in mice with ApcMin and mutant
Atp5a1 alleles (both genes are found on chromosome 18) implicated loss and duplication of
the entire chromosome 18 as the mechanism of LOH in polyps from ApcMin/+ mice [30].
Homozygous mutation of Atp5a1 is lethal to cells. Fewer polyps were observed in mice with
both mutant Atp5a1 and ApcMin alleles are on the same chromosome than in mice with
trans-distributed mutant Atp5a1 and ApcMin alleles. Furthermore, when compared to polyps
from ApcMin/+ mice harboring a wild-type Atp5a1 allele, the distribution and
histopathological characteristics of polyps were different in mice with Apc and Atp5a1
mutations in cis distribution, but not in trans. When mutations in Apc and Atp5a1 are in cis,
complete loss of chromosome 18 with or without subsequent duplication results in
nonviability since homozygosity for mutant Atp5a1 is lethal. In contrast, there would not be
this selection against loss and reduplication of the whole chromosome if mutated Apc and
Atp5a1 are in trans. Since polyps formed in the latter situation were indistinguishable from
those that developed in ApcMin/+ mice with wild-type Atp5a1 alleles, it was concluded that
loss and duplication of chromosome 18 is the primary mechanism of LOH in polyps from
ApcMin/+ mice [30]. One potential caveat for consideration is that, because chromosome 18
is acrocentric, a single somatic recombination proximal to the Apc locus would be difficult
to distinguish from complete loss and reduplication of the whole chromosome [29].

In addition to intestinal tumors, ApcMin/+ mice develop mammary tumors, but at a much
lower penetrance (5%) and at a relatively older age (16 ±3.5 weeks) [18]. Histologically,
mammary tumors are usually invasive in nature, with areas of adenocarcinoma and
adenoacanthoma, the latter of which have not been reported in humans [18]. ApcMin/+ mice
treated with the mutagen ENU, exposed to X-rays, or with a mutation in the DNA repair
gene Myh, have increased mammary tumor incidence but the same tumor morphology,
indicating that Apc mutation alone is not sufficient for mammary tumorigenesis [26, 31]. In
mice with wild-type Apc, mammary expression of stabilized β-catenin results in tumor
development, consistent with a role for Apc in inhibiting mammary tumorigenesis via
antagonizing the Wnt signaling pathway [18, 32, 33]. Although humans with FAP also have
an increased risk of tumors outside the gastrointestinal tract, including desmoid tumors,
mandibular osteomas, and retinal dysplasias, they do not show increased susceptibility to
breast cancer [34]. However, APC mutation or promoter methylation has been detected in up
to 70% of human breast cancers surveyed [35–37]. Moreover, APC methylation status was
significantly associated with decreased APC protein level and reduced disease-free survival
in patients with invasive ductal carcinoma of the breast, supporting a role for APC in
suppression of mammary neoplasia [38].

Although intestinal polyposis is the dominant feature of ApcMin/+ mice, these mice also
show alterations in other tissues [17, 39]. There is no evidences that LOH is necessary for
these extra-intestinal phenotypes of ApcMin/+ mice, which suggests that Apc haplo-
insufficiency is the underlying mechanism. Anemia was the first such phenotype to be
described in ApcMin/+ mice and was used to predict intestinal polyposis before the
establishment of ApcMin genotyping [17]. Although the exact pathogenesis is not completely
understood, anemia in ApcMin/+ mice is microcytic-hypochromic, consistent with chronic
blood loss from intestinal lesions as the underlying cause [17]. Old ApcMin/+ mice also
develop large spleens with enhanced splenic hematopoiesis, therefore, larger spleens might
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be an extra-medullary compensatory response to anemia. However, because larger spleens
and anemia are not always correlated in ApcMin/+ mice, a different mechanism for large
spleen development might be at play [39]. Old ApcMin/+ mice can also develop
myelodysplastic disease, with increased formation of myeloid, granulocytic, and erythroid
colonies in the spleen [40, 41]. Other hematological changes seen in ApcMin/+ mice include
rapid thymus regression, depletion of splenic natural killer (NK) cells, and loss of B-
lymphocyte progenitors in spleen and bone marrow [42]. In ApcMin/+ mice the bone marrow
micro-environment appears disrupted and gradual loss of the quiescent hematopoietic stem
cells occurs [41].

Gonadal changes in ApcMin/+ mice include increased numbers of degenerated and
undeveloped ovarian follicles, and under-developed testicular seminiferous tubules, the
cause of which is not known [39]. However, conditional truncating Apc mutation in
testicular Sertoli cells results in premature germ-cell loss and the absence of both Sertoli cell
apical extensions and the blood-testis barrier. These changes were not recapitulated by
activating mutations in β-catenin, consistent with a Wnt-independent Apc function [43].
Disruption and involution of mammary glandular structures has been reported in pregnant
ApcMin/+ mice, along with altered proliferation, increased apoptosis, and interrupted
epithelial integrity and polarization of mammary epithelial cells. Because these alterations
occur in the absence of changes in Wnt target transcript levels and nuclear localization of β-
catenin, these mammary gland phenotypes appear to be Wnt-independent [44]. Finally, at 15
weeks, ApcMin/+ mice display a change in their serum lipid profile called dyslipidemia, with
increased serum levels of triacylglycerol, cholesterol, and free fatty acids. The exact cause
of this dyslipidemia is unknown, but hyperlipidemia has been correlated with the activity
and level of the lipid regulatory nuclear receptors PPAR α, β and γ [45–47]. Treatment of
ApcMin/+ mice with the nonsteroidal anti-inflammatory agent indomethacin decreases polyp
number and also improves dyslipidemia in ApcMin/+ mice [48]. These extra intestinal
phenotypes indicate that Apc functions not only in intestinal epithelial cells, but also in
development and maintenance of other tissues.

In addition to its use as a model of FAP, ApcMin/+ mice have been used extensively as a
tumor susceptibility model to test the effect of environmental factors, mutations in other
genes, and drugs on intestinal tumorigenesis. Such studies have increased our understanding
of both intestinal tumorigenesis and cancer biology in general and are summarized in several
excellent reviews [11, 19, 49, 50].

Phenotypic variation in ApcMin/+ mice of different genetic backgrounds allowed elucidation
of modifier genes that can enhance or attenuate intestinal polyposis, called Modifiers of Min
(Mom) [19, 50]. Some Mom genes are found on chromosome 18. Some modifiers are single
genes, others are thought to represent contiguous genes, and some remain less well-defined
[50–54]. The modifiers appear to function as recessive, dominant, or semi-dominant loci.
Some modifier genes, such as Mom-1 (Pla2g2a), work in a cell-non-autonomous manner
[55, 56]. Others, like Mom-2 (Atp5a1), appear to inhibit loss of the wild-type Apc allele
[30]. A detailed discussion of the mechanisms of these modifiers can be found elsewhere
[50].

Mouse models expressing truncated Apc protein longer than ApcMin

APC is a large multi-domain protein that has been implicated in many cellular activities in
addition to its role in down-regulating Wnt signaling. APC domains involved in targeting β-
catenin for degradation are in the middle region of APC. Interaction of C-terminal APC
regions with DNA and with microtubules has been proposed to contribute to tumor
suppression [57, 58]. Disruption of the interaction between APC and microtubules affects
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spindle formation and mitosis in colon cancer cell lines and in intestinal epithelial cells in
ApcMin/+ mice [59]. In addition, ApcMin/Min embryonic stem (ES) cells show chromosomal
instability (CIN) [60]. These observations led to the proposal that loss of the C-terminal one
third of APC would promote intestinal tumorigenesis [60–62]. To test this hypothesis, three
mouse models with truncations of the C-terminal third of APC have been generated;
Apc1638N, Apc1638T, and Apc1572T. The Apc1638N mouse was generated by insertion of a
neomycin-resistance gene at Apc codon 1660. Apc1638N/1638N mice die as embryos.
Apc1638N/+ mice develop intestinal polyps, but very few (less than 10) compared to the
number in ApcMin/+ mice, and with a different distribution (gastric and colonic). Intestinal
tumors in Apc1638N/+ mice are also invasive, with distant metastasis in the liver detected in
one mouse. Because Apc1638N/+ mice live longer than ApcMin/+, mice, the invasive
phenotype could reflect tumor progression over time. Intestinal tumorigenesis is enhanced in
Apc1638N/+ mice with mutations in other tumor suppressor genes [63–67]. It was initially
suggested that LOH in tumors from Apc1638N mice resulted from loss of the entire
chromosome 18 [68]. However, more recent evidence indicates that the Apc+ allele appears
to be maintained in most polyps from Apc1638N/+ mice, consistent with inactivation or
silencing of the wild-type Apc allele [69]. One hundred percent of Apc1638N/+ mice develop
desmoid tumors and cutaneous cysts [70]. In humans, desmoid tumors occur in FAP patients
[71] and also in patients with an attenuated form of FAP (AFAP) resulting from germ-line
mutations in the 3’ portion of APC [72]. AFAP patients develop only a few polyps, mainly
in the duodenum [72–74]. Since only full-length and not truncated Apc protein is detected in
these mice using Western blot, Apc1638N may be considered an essentially null allele [75].
The antibiotic selection cassette used to generate the Apc1638N mice was inserted in reverse
orientation and it is thought that production of an antisense Apc transcript might lead to
inhibition of the truncated Apc translation. Alternatively, the mild intestinal polyposis
phenotype may indicate that the truncated Apc protein is not completely absent, but rather
its level is below detection limits due to reduced expression or increased instability of the
truncated protein. Possibly, this truncated Apc protein with multiple remaining β-catenin
binding and degradation domains can suppress intestinal tumorigenesis in these mice.

In contrast to Apc1638N/+ mice, truncated Apc is expressed in Apc1638T mice, which have
the antibiotic-resistance gene (hygromycin) inserted in the same position as in Apc1638N

mice, but in the sense orientation [76]. Unexpectedly, Apc1638T/1638T mice are viable and do
not develop intestinal or extra-intestinal tumors. Instead, these mice display post-natal
growth retardation and nipple-associated cutaneous cysts, and lack preputial glands. The
molecular basis for these phenotypes has not been determined, but they indicate a role for
the C-terminal region of Apc in development [76]. Apc1638T/1638T mice also show larger
thyroid follicles, accumulation of thyroglobulin in the endoplasmic reticulum and less
response to exogenous thyroid stimulating hormone relative to wildtype mice [77]. It is
puzzling that Apc1638N/1638T and ApcMin/1638T mice are not viable. The Apc1638T protein
retains all 15 a.a. repeats, 1 of 3 SAMP motifs, and 3 of 7 20-a.a. repeats. Apc1368T/1638T

embryonic stem (ES) cells have almost no change in Wnt signaling level while Wnt
signaling is upregulated in Apc1638T/1638N ES cells [76]. Perhaps the remaining functions of
the truncated Apc1638T allele are dose-dependent, and thus, the Apc1368T allele is haplo-
insufficient for β-catenin regulation.

More recently, the Apc1572T mouse model was generated by deleting the remaining SAMP
repeat in the Apc1638T mouse [78]. Although the truncated Apc protein in Apc1572T/+ mice
is only 66 amino acids shorter than Apc from Apc1638T mice, the phenotypes of these two
mouse models could not be more different. Unlike Apc1638T, Apc1572T germ-line
homozygosity is incompatible with viability. One remarkable feature of Apc1572T/+ mice on
a B6 background is that they develop no intestinal tumors, but instead develop invasive
mammary tumors that can even metastasize to the lungs. While mammary tumor
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morphology is similar in both Apc1572T/+ and ApcMin/+ mice, the incidence of mammary
tumors is much higher in Apc1572T/+ mice; 100% in virgin females and 30% in males
compared to only 5% in ApcMin/+ females. β-catenin activity, as assessed using a
“TOPFLASH” reporter assay, is higher in Apc1572T/1572T ES cells than in wild-type or
Apc1638T/1638T ES cells, but lower than in Apc1638N/1638N ES cells. Apc1572T/+ mice do
develop intestinal polyps if they also have a Smad4Sad allele, which results in defective
TGF-β signaling [78]. Because the TGF-β pathway inhibits Wnt signaling [79], the authors
propose that development of a mammary tumor requires a low level of Wnt signaling which
is provided by the Apc1572T allele. Higher Wnt signaling resulting from reduced TGFβ
signal, or from a second mutant Apc allele, promotes intestinal polyp formation. Although
this model might explain the development of intestinal polyps in mice heterozygous for both
Apc1572T and Smad4Sad [80], it does not explain the high penetrance of mammary tumors in
these mice, given the low penetrance of mammary tumors in other models with higher Wnt
signaling.

In conclusion, data collected from Apc1572T and Apc1638T mice implicates the C-terminal
portion of Apc in control of mammary tumorigenesis and development. However, these
models provide no direct evidence that the Apc C-terminal region suppresses intestinal
tumorigenesis.

Apc1309 and Apc1322T/+ mice
Although ApcMin/+ mice have been used to model APC mutation in humans, similarly sized
APC truncations are uncommon in both inherited and sporadic human colon cancers.
Mutations in APC associated with colon cancer typically truncate the C-terminal half of the
protein, leaving the first 20-amino acid (20-a.a.) repeat intact in at least one APC allele [81].
As this 20-a.a. repeat can bind to β-catenin, one would anticipate differences in cells
expressing shorter Apc truncations, such as ApcMin, and cells with longer APC (as in human
CRC) [82, 83]. The Apc1309 and Apc1322T mouse models were generated to express
truncated Apc that retains the first 20-a.a. repeat [81, 84, 85]. As with ApcMin/+, both
Apc1309/+ and Apc1322T/+ mice develop polyps mainly in the small intestine, but these
polyps are more proximal than those from ApcMin/+ mice. The levels of Wnt target gene
transcripts are lower in polyps from Apc1322T/+ mice than in polyps from ApcMin/+ mice, as
expected since the Apc1322T protein includes the first 20-a.a. repeat [86]. However,
Apc1322T/+ mice develop more polyps (> 200 polyps by 12 weeks) and have more intestinal
stem cells than do ApcMin/+ mice [84]. Together, these results support the “just right”
hypothesis that predicts that inclusion of the first 20-a.a. repeat in truncated APC proteins
will result in only slight elevation of Wnt signaling, which is more conducive to intestinal
tumor growth than is elevation of Wnt signaling to a higher level [82]. Extra-intestinal
phenotypes reported for Apc1322T/+ mice include anemia and large spleens, similar to
ApcMin/+ mice [84]. In contrast, Apc1309/+ mice develop far fewer intestinal tumors (~ 35),
mainly in the small intestine at the age of 12–14 weeks, and have hyperlipidemia that
develops at an even earlier age than in ApcMin/+ mice [85, 87]. Potential explanations for
this large discrepancy in polyp number between mouse models that differ in truncated APC
length by only 13 amino acids include the influence of environmental factors, genetic
background, and different technologies used to generate these mice. Table 1 summarizes the
intestinal phenotype in different Apc mouse models with truncated Apc longer than ApcMin.

Mouse models expressing truncated Apc protein shorter than ApcMin

Seven mouse models with mutations upstream to that in ApcMin have been described.
ApcΔ242 [88], ApcΔ474 [89], and ApcΔ716 [90–92] mice have Apc truncation mutations at
codons, 242, 474, and 716, respectively, while ApcΔ580 [93], Apc580D [94], and ApcΔ14

[95] mice each have a deletion of exon 14, resulting in a frameshift and a nonsense mutation
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at codon 580. ApcΔ15 mice have a deletion of the last Apc exon and the 3’UTR region and
have no detectable expression of the mutant allele [96]. These seven mouse models share
many phenotypes with ApcMin/+ mice, including embryonic lethality in the homozygous
state, and in heterozygous mice, development of anemia and intestinal polyps predominantly
in the small intestine that are indistinguishable at the microscopic level [88–94, 96, 97].
Although polyp number varies between these seven models (Table 2), in most cases, direct
comparative studies have not been performed. Mammary tumors have been reported for
14.3% of ApcΔ58018.5% of ApcΔ474, and 9% of ApcΔ14 mice [89, 93, 97].

Is the variation in polyp number in these mouse models due to the progressive deletion of
particular Apc domains (see figure 1)? The ApcΔ716 protein is 134 a.a. shorter than the
ApcMin protein and lacks an additional portion of the armadillo repeat region. Although it is
tempting to speculate that the three-fold increase in polyp number seen in ApcΔ716/+ mice
compared to ApcMin/+ mice results from interruption of the armadillo repeat region,
ApcΔ242/+ mice, which have a truncating Apc mutation that eliminates the entire armadillo
repeat region, develop fewer polyps than ApcΔ716/+ mice. Moreover, ApcΔ580/+, Apc580D/+,
ApcΔ14/+ and ApcΔ474/+ mice, which have truncating mutations in the middle of the
armadillo repeat region, have reported intestinal polyp numbers similar to that seen in
ApcMin/+ mice (Table 2).

Complete deletion of Apc
In human CRC, APC mutations are predominantly found in a region referred to as the
mutation cluster region (MCR), and result in truncation of the C-terminal half of APC [98].
Complete deletion of APC has been reported in FAP syndrome only rarely [99, 100],
leading to the hypothesis that truncated APC protein can enhance tumorigenicity in a
dominant-negative manner. A mouse model with complete deletion of all 15 Apc exons
(ApcΔe1–15) was generated to test the requirement of truncated APC for tumor formation
[101]. ApcΔe1–15/+ mice develop intestinal polyps of the same distribution and morphology
as those seen in ApcMin/+ mice, but with increased frequency. Polyps from ApcΔe1–15/+

mice had lower levels of Apc+ mRNA compared to normal tissue, consistent with a
requirement for loss of the wild-type allele for intestinal tumor development, although this
was not directly examined. ApcΔe1–15/+ mice also develop more severe anemia than
ApcMin/+ mice, and one ApcΔe1–15/+ mouse developed a mammary tumor. Female
ApcΔe1–15/+ mice showed more severe phenotypes than did males. Polyps from ApcΔe1–15/+

mice had lower mRNA levels of Wnt target genes Axin2, c-Jun, and β-catenin than polyps
from ApcMin/+ mice [101]. Although puzzling in terms of the underlying mechanism and
pathogenesis, this observation is consistent with the hypothesis that there is a level of Wnt
signaling optimal for polyp formation, and signaling in excess of this level inhibits polyposis
[101].

Apc mouse models with interstitial Apc mutations
Two mouse models have been recently described in which the engineered mutations result in
changes within, rather than truncation of, Apc protein: ApcmNLS and ApcΔSAMP models.

ApcmNLS model
APC is perhaps best known as a Wnt signal antagonist. In this capacity, APC is a component
of a cytoplasmic complex that targets the oncoprotein β-catenin for proteasomal degradation
[7]. APC also shuttles between the nucleus and the cytoplasm, aided by at least 2 nuclear
localization signals (NLS) and 5 nuclear export signals (NES) [102]. Studies using cultured
cells indicate that APC and β-catenin can interact in the nucleus, resulting in transcriptional
repression of Wnt target genes and inhibition of cellular proliferation [9, 103]. In addition,
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nuclear APC interacts with Topoisomerase IIα, a critical enzyme required for DNA
replication and a target for traditional cancer chemotherapeutics [104]. APC also has a role
in DNA repair and synthesis [105, 106]. To study the role of nuclear APC in tissue
homeostasis and tumor suppression, a mouse model was generated in which nuclear import
of Apc was compromised via the introduction of inactivating mutations into both NLSs
(ApcmNLS) [107]. ApcmNLS/mNLS mice are viable, with no significant alteration in lifespan.
Compared to Apc+/+ mice, intestinal epithelia from ApcmNLS/mNLS mice were more
proliferative and showed higher levels of Wnt target gene mRNA. In addition, ApcMin/+

mice develop more and larger intestinal tumors when they also harbor the ApcmNLS allele
(ApcmNLS/Min). Together, studies using the ApcmNLS model support a role for nuclear Apc
in inhibition of proliferation, Wnt signaling, and tumorigenesis [107].

ApcΔSAMP model
The ApcΔSAMP mouse, with a deletion of Apc amino acids 1322 to 2005, was generated to
delineate the contribution of the Apc C-terminus to tumor suppression [108]. This Apc
deletion eliminates all but the first 20-a.a. repeat and all SAMP motifs, but retains the C-
terminal region of Apc. Phenotypes of the Apc1322T/+ and ApcΔSAMP mice were similar
with regard to polyp number, distribution, size, and morphology, severity of dysplasia,
differentiated and stem cell populations, and expression of Wnt target genes. Thus, it
appears that in the Apc1322T/+ model, the C-terminal region of Apc is not involved in
suppression of intestinal adenoma [108].

Changing the level of Apc expression
Two Apc mouse models with reduced Apc expression were generated by inserting a
neomycin cassette into Apc intron 13 in either reverse (ApcNeoR) or forward orientation
(ApcNeoF) [109, 110]. The neomycin cassette disrupts an enhancer and reduces the level of
full-length Apc expressed from the mutant allele to 20% of normal levels for ApcNeoR, and
10% for ApcNeoF. Each allele produces an embryonic lethal phenotype in the homozygous
state. By the age of 15 months, ApcNeoR/+ and ApcNeoF/+ develop intestinal polyps with
relatively low incidence (19% and 50%, respectively) and multiplicity (0.26±5.4 and
1.09±8.5 polyps per mouse, respectively). The polyps in ApcNeoR and ApcNeoF mice display
loss of the wild-type Apc allele and have less β-catenin stability and accumulation of
nuclear β-catenin than do polyps from ApcΔ716/+ mice [109, 110]. Thus, in mice, there
appears to be a critical threshold level of Apc to support tumor suppression.

A transgenic mouse expressing truncated Apc
Based in part on the correlation of FAP severity with specific truncating APC mutations, and
on the ability of truncated APC to bind to full-length APC, it was proposed that particular
APC truncations act in a dominant-negative manner [111]. However, a direct test of this
hypothesis revealed no increased polyp susceptibility in mice carrying a transgene encoding
Apc amino acids 1–716, even though the truncated Apc protein was detected in intestinal
cells. It is possible that the proposed dominant -negative activity of truncated Apc could not
overcome functional Apc from two wild-type Apc alleles that could compensate for any
deleterious effect of the truncated allele. To explore this possibility, the transgene for
truncated Apc was introduced into ApcΔ716/+ mice [90]. Because intestinal tumor number,
distribution, and morphology were the same in ApcΔ716/+ mice with and without the extra
truncated Apc transgene, it was concluded that in this mouse model, truncated Apc does not
act in a dominant-negative manner [90].
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Conditional Apc mouse models
Mouse models with germline Apc mutations have been useful to probe many aspects of
APC biology, especially in intestinal tumorigenesis. However, most of these models are
limited by a short life span, the predominance of intestinal phenotypes, and embryonic
lethality in the homozygous state. To study functions of APC at different developmental
stages and in organs other than the intestine, investigators have developed mice with
conditional Apc mutations [112]. A critical component of most conditional systems is CRE
recombinase, which induces recombination between two loxP1 sites, resulting in excision of
the DNA between these sites. In conditional Apc mouse models, loxP1 sequences are
inserted into introns of the mouse Apc gene flanking particular exon(s). In the presence of
Cre, excision of the lox-flanked DNA leads to a frameshift mutation and truncation of Apc.
Five different conditional Apc alleles have been made; Apc580S, ApcCKO, ApcΔex14,
Apc15flox and Apclox468 [93–96, 113, 114]. The specificity of these Apc mutations is
achieved by placing Cre under control of a tissue- or developmental stage-specific promoter
or an inducible promoter, or by infecting tissues with Cre-expressing Adenovirus [115].
Table 3 summarizes different conditional Apc mouse models.

Apc rat models
A rat model with a germline nonsense mutation at Apc codon 1137 (Apcam1137) was
generated to overcome some of the limitations of Apc mouse models [134]. Rats
homozygous for the Apcam1137 allele die as embryos. Apcam1137/+ rats develop both small
intestinal and colonic polyps with 100% penetrance, and are called “PIRC” rats for
Polyposis In Rat Colons [134]. The polyps in PIRC rats are adenomas with malignant
changes and local invasion seen in old rats. No signs of metastasis have been detected in
these rats. As seen in humans with germline Apc mutations, the polyps from PIRC rats show
β-catenin nuclear translocation in advanced but not in early adenomas. As with ApcMin/+

mice, most intestinal polyps in PIRC rats show LOH. Because chromosome 18, which
carries the Apc gene in rats, is metacentric, pyrosequencing could be used to demonstrate
that LOH in PIRC rats predominantly occurs by means of homologous recombination [134].
The greater width of rat intestines and colons, relative to those of mice, allows for growth of
larger intestinal tumors, which facilitates study of tumor progression beyond the early stage.
Wider colons and higher colonic tumor multiplicities in rats also supported a longitudinal
endoscopic study of tumorigenesis [134]. Male PIRC rats have more polyps than do females
[101]. Most Apc mouse models do not show a gender bias. However, in ApcMin-FCCC/+

mice, an ApcMin/+ mouse model with a different genetic background, males also develop
more colonic polyps than do females [135]. In contrast, female ApcΔe1–15/+ mice display
more severe phenotypes than do males [101]. In humans, women appear to be slightly less
affected by colon cancer than are men [136]. PIRC rats also show high incidence of jaw
tumors, which are the main cause of morbidity in female PIRC rats [134]. This extra-
intestinal phenotype has also been described in patients with FAP syndrome [137].

A second Apc rat model (Kyoto Apc Delta or KAD rat) was developed with a germline
nonsense mutation in the Apc gene, resulting in deletion of the C-terminal 321 amino acids
[138]. This deletion does not appear to affect life expectancy even in homozygous KAD
rats, and no spontaneous polyps develop in the KAD rat intestines. However, KAD rats
showed enhanced inflammation-mediated colon tumorigenicity, consistent with a Wnt-
independent role for the C-terminal domain of Apc in tumor suppression.

In summary, rodent models with Apc mutations were first generated more than 2 decades
ago. Studies of 45 rodent models with germline and conditional Apc mutations have led to
greater understanding of the role of APC in development, differentiation, and homeostasis of
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intestinal epithelial cells. In addition, these models have allowed exploration of the role of
APC in intestinal and extra-intestinal development and tumorigenesis. Mouse and rat models
with germline Apc mutations have permitted experimental testing of different molecular
pathways and investigation of genetic and environmental contributions to tumor formation,
not only in the gastrointestinal tract but also in other tissues. These models have also
facilitated testing different preventive and therapeutic agents in preclinical studies.
Continued effort should be made to clarify some of the less understood features of the
different Apc rodent models. These lingering mysteries include identifying the variables that
contribute to differences in extra-intestinal phenotypes, and polyp distribution and number.
The full potential of the Apc models has not yet been reached; it is expected that they will
continue to provide insight into Apc and cancer biology for decades to come.
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Figure 1.
Apc protein structure and different rodent models with germline Apc mutations
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Table 1

Intestinal phenotypes in mice with truncated Apc longer than that of ApcMin

Mouse
model

Polyp number ApcMin/+

Polyp
number*

Notes Ref

Apc1638N/+ <10 - Malignant changes are detected in old mice [75]

Apc1638T/+ None - Viable homozygous mutant mice [76]

Apc1572T/+ None - [78]

Apc1322T/+ 192 (age 10–12 weeks) 154 (age 110–130 days) Majority of polyps are in the proximal 2/3 of the small
intestine

[84, 86]

Apc1309/+ 36.7±2.7 - [87]

*
included in the same study
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Table 2

Intestinal phenotypes in mice with truncated Apc shorter than that of ApcMin

Mouse
model

Polyp
number

ApcMin/+

Polyp
number*

Notes Ref

ApcΔ716 256±55 1/3 of those in ApcΔ716 [91]

ApcΔ14 36±29 34±18 More polyps in distal colon and rectum relative to ApcMin/+, number of polyps
increases in germ-free environment

[97]

ApcΔ15/+ 184.7 - Tumors are mainly in the ileum, no comparative data to ApcMin mice [96]

ApcΔ580 120±37 - No full-length or truncated APC proteins were detected in polyps [93]

Apc580D ?? - [94]

ApcΔ474 123±9.6 No comparative data to ApcMin mice [89]

ApcΔ242 177±30 106±28 [88]

*
included in the same study
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Table 3

mice with conditional mutations in Apc

Apc580S allele; Expression of Cre recombinase results in excision of Apc exon 14 and a stop codon at a.a. 580 [94]

Mouse Organ Developmental
stage

Cre delivery/phenotype Ref

Apc580S Colon and rectum Adult Cre delivered via
Adenovirus vector
injected in the colon
through the anus.
Develop colon
adenomas in the distal 3
cm of the colon.
Malignant
transformation seen in
old lesions.

[94]

CPC;Apc
CDX2P 9.5-NLS-Cre; Apc+/loxP)

Distal ileum, cecum, colon and
rectum

Day 8.5 embryonic Cre is expressed using
9.5-Kb DNA fragment
from the homeobox gene
Cdx2 promoter.
Mice develop ~10
tumors in ileum, cecum
and colon by the age of
300 day. Malignant
transformation in 66.1%
of mice. Mice show
anemia and stunted
growth.

[132]

CDX2P9.5-G22Cre; Apcflox/flox Distal ileum, cecum, colon and
rectum

Day 8.5 embryonic Cre is expressed using
9.5-Kb DNA fragment
from the homeobox gene
Cdx2 promoter. There is
a string of 22 guanine
nucleotides after the
ATG initiation codon
(out of frame).
Restoration of in-frame
sequence occurs by
mitotic microsatellite
instability.
Mice die at age of 10–27
days and develop large
number of adenomatous
polyps in the distal
ileum and large
intestine.

[133]

AhCre-Apcfl/fl Small intestine, large intestine.
Possibly the liver

Adult Cre expressed using
Cyp1A promoter when
mice were injected with
β-naphthoflavone.
Upregulation in Wnt
signaling. Intestinal cell
differentiation,
proliferation, migration,
and apoptosis disrupted.
Mice died 4 days after
induction.

[129]

MMTV-Cre-Apcflox/flox Ptenflox/flox Salivary glands ?? Cre expressed using
MMTV promoter. In
B6X129 background,
MMTV promoter is
active in salivary gland
and less active in
mammary gland.
Salivary gland tumors
only with Pten deletion.

[117]

Mx1-Cre+ Apcfl/fl Hematopoie tic stem and progenitor
cells transplanted into WT mice

Adult Cre expressed under the
type-1 interferon

[126]
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Apc580S allele; Expression of Cre recombinase results in excision of Apc exon 14 and a stop codon at a.a. 580 [94]

Mouse Organ Developmental
stage

Cre delivery/phenotype Ref

inducible promoter Mx1
after injection of
polyinosinic-
polycytidylic acid (pI-
pC). This promotor is
active in other tissues
including; intestinal
epithelium, oseoblasts
and kidney. To restrict
the expression in only
hematopoetic stem cells
and progenitor cells,
bone marrow cells from
Mx1-Cre+ Apcfl/fl mice
were implanted into WT
mice.
Induction of Cre results
in increased cell cycle
entry, apoptosis and
exhaustion of
hematopoetic and
depletion of myeloid
progenitor pool

Ksp-Cre Apc58S/580S Renal tubular epithelial cells and
developing genitourinary tract

Embryonic Cre is expressed using
Ksp-cadherin promoter.
Neonatal death with
signs of renal failure.
Rare mice that live to
adulthood develop renal
cysts, adenoma and
elevated blood urea level

[125]

AhCre-Apcfl/fl Kidney Day 14.5–18.5 embryonic Cre is expressed using
Cyp1A promoter with
no β-naphthoflavone
induction. Renal
carcinoma in ~1/4 mice
at 6 months, increased
incidence with co-
existence of p53
mutations

[128]

OC-Cre Apcflox/flox Osteoblasts Starting from embryonic
day 17

Cre is expressed using
promoter of oseocalcin.
Increased bone
formation with distorted
bone architecture.
Reduced survival to time
of weaning (10%).

[119]

ApcCKO allele; Expression of Cre recombinase results in excision of Apc exon 14 and a stop codon at a.a. 580 [93]

Mouse Organ Developmental
stage

Cre delivery/phenotype Ref

ApcCKO/CKO-LSL-Kras Distal colon Adult Cre is delivered via
adenovirus vector
injected in the colon
through the anus,
resulting in excision of
Apc exon 14 and
expression of mutant
constitutively active
Kras.
Adenocarcinoma in the
distal colon that show
spontaneous metastasis
to the liver after 24
weeks

[120]
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Apc580S allele; Expression of Cre recombinase results in excision of Apc exon 14 and a stop codon at a.a. 580 [94]

Mouse Organ Developmental
stage

Cre delivery/phenotype Ref

K14-Cre-ApcCKO/CKO

K14-Cre-ApcCKO/+
Ectodermal derived tissues
including mammary glands

Day 9.5 embryonic Cre is expressed using
Keratin-14 promoter in
epidermal tissues.
Growth retardation,
premature death,
abnormalities in
epidermal derived
tissues including: hair
follicles, cornea, and
teeth. Thymus
hypoplasia, squamous
metaplasia in the thymus
(homozygous),
mammary tumors in
76.5% of heterozygous
females.

[93, 121]

WAP-Cre-ApcCKO/CKO

WAP-Cre-ApcCKO/+
Lactating epithelial cells Lactation Cre is expressed using

Whey Acidic Protein
(Wap) promoter.
Mammary tumors in
nulliparous and
multiparous females
(less than 20%)

[93]

Ahmr2-Cre-Apcflox/flox Uterine stroma (in females) Sertoli
cells (in males)

Fetus Cre is expressed using
anti-Mullerian hormone
type II receptor
promoter in
mesenchyme of fetal
Mullerian duct.
Progressive uterine
hyperplasia and
endometrial carcinoma.
Apc has a cell-non-
autonomous role as an
endometrial tumor
suppressor protein.
Large spleens (in
females); abnormal
spermatogenesis, loss of
the apical part of Sertoli
cells, disruption of tight
junctions, no tumors (in
males).

[43, 130]

Pms2-ApcCKO/+ ?? Out-of-frame Cre that
reverts back in-frame
stochastically. Rate of
transformation is higher
in Apc1638N/CKO and
ApcMin/CKO mice
relative to ApcCKO/+

mice

[118]

Apc15flox allele; Expression of Cre recombinase results in excision of Apc last exon and 3’UTR region [96]

Mouse Organ Developmental
stage

Cre delivery/phenotype Ref

FabplCre; Apc15lox/+ Distal small intestine and large
intestine

?? Cre is expressed using
fatty-acid binding
protein-1 (Fabp1)
promoter in some cells.
Develop adenoma and
adenocarcinoma mainly
in large intestine

[96]

Ahmr2-Cre-Apc15flox/15flox Uterine myometrium ?? Cre is expressed using
anti-Mullerian hormone
type II receptor

[131]
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Apc580S allele; Expression of Cre recombinase results in excision of Apc exon 14 and a stop codon at a.a. 580 [94]

Mouse Organ Developmental
stage

Cre delivery/phenotype Ref

promoter in
mesenchyme of fetal
Mullerian duct.
Myometrial defects,
dystocia, reduced
number of endometrial
glands

Pgr-Cre-Apcflox/flox Uterine endometrium& myometrium ?? Cre is expressed using
progesterone receptor
promoter. Myometrial
and endometrial defects,
endometriosis interna-
like changes

[131]

Math1-Cre-ApcFl/Fl Cerebellum Day 12.5 embryonic Cre is expressed using
Math-1 promoter in
Granule cells in the
cerebellum. No tumor.
Cerebellar cortical
hypoplasia, impaired
motor coordinator and
ataxia

[122]

Col2a1-Cre-Apc15lox/15lox Mesenchymal cells Day 9.5 embryonic in
sclerotome Day 12.5–
16.5 embryonic in
chondrogenic and
osteogenic cells.

Cre is expressed using
Col2a1 (collagen-2a-1)
promoter in
mesenchymal cells.
Embryonic lethal,
defective cartilage and
bone differentiation

[124]

Apc15lox/15lox Apc15lox/1638N

Apc15lox/+ Apc15lox/1572T
Hematopoietic stem and progenitor
cells

Adult Cre delivered by a
lentiviral vector ex-vivo
Different levels of Wnt
signaling activation
associated with
differential effects on
hematopoietic stem cell
and myeloid and
lymphoid differentiation

[123]

ApcΔex14 allele; Expression of Cre recombinase results in excision of Apc exon 14 and a stop codon at a.a. 580 [95]

Mouse Organ Developmental
stage

Cre delivery/phenotype Ref

Vil-CreERT2-Apclox/lox Small and large intestine Adult Cre expressed using
Villin promoter when
the mice are injected
with Tamoxifen.
Upregulation of Wnt
signaling, increased
proliferation and
apoptosis, decreased
migration, increased
number of cells
committed to Paneth cell
differentiation.

[116]

ApcΔex14/Δex14 Liver Adult Cre driven by a CMV
promoter is delivered
using Adenovirus
injected intravenously.
High viral dose causes
hepatomegaly,
hepatocellular
hyperplasia and death.
Low viral dose causes
hepatocellular
carcinoma

[95]
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Apc580S allele; Expression of Cre recombinase results in excision of Apc exon 14 and a stop codon at a.a. 580 [94]

Mouse Organ Developmental
stage

Cre delivery/phenotype Ref

Ap/lox468 allele; Expression of Cre recombinase results in Excision of exons 11 & 12 and a frameshift splicing exons 10–13 and
truncating Apc at codon 468.

[113]

Mouse Organ Developmental
stage

Cre delivery/phenotype Ref

Ts4Cre-Apclox468/+ Colon and distal ileum ?? Cre is expressed using
Ts4 promoter. Polyposis
in the colon and distal
ileum. Lipoteichoic
acid-deficient
lactobacilli bacteria
modulate colonic
inflammation and reduce
polyp formation.

[114]

LckCre-Apclox/lox468 Thymus Starts at CD44− CD25+
double-negative 3 (DN3)
stage and complete by
DN4 stage of lymphocyte
development

Cre is expressed using
Lck promoter during the
development of
thymocytes. Thymic
atrophy, reduced T-
lymphocyte receptor
rearrangement,
increasing proliferation
of pre-T cells,
chromosomal
segregation defects, T-
cell developmental
delay.

[113]

??
not defined
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