113 research outputs found

    Mapping biodiversity value worldwide: combining higher-taxon richness from different groups

    Get PDF
    Maps of large-scale biodiversity are urgently needed to guide conservation, and yet complete enumeration of organisms is impractical at present. One indirect approach is to measure richness at higher taxonomic ranks, such as families. The difficulty is how to combine information from different groups on numbers of higher taxa, when these taxa may in effect have been defined in different ways, particularly for more distantly related major groups. In this paper, the regional family richness of terrestrial and freshwater seed plants, amphibians, reptiles and mammals is mapped worldwide by combining: (i) absolute family richness; (ii) proportional family richness; and (iii) proportional family richness weighted for the total species richness in each major group. The assumptions of the three methods and their effects on the results are discussed, although for these data the broad pattern is surprisingly robust with respect to the method of combination. Scores from each of the methods of combining families are used to rank the top five richness hotspots and complementary areas, and hotspots of endemism are mapped by unweighted combination of range-size rarity scores

    Molecular Diversity of Fungal Phylotypes Co-Amplified Alongside Nematodes from Coastal and Deep-Sea Marine Environments

    Get PDF
    Nematodes and fungi are both ubiquitous in marine environments, yet few studies have investigated relationships between these two groups. Microbial species share many well-documented interactions with both free-living and parasitic nematode species, and limited data from previous studies have suggested ecological associations between fungi and nematodes in benthic marine habitats. This study aimed to further document the taxonomy and distribution of fungal taxa often co-amplified from nematode specimens. A total of 15 fungal 18S rRNA phylotypes were isolated from nematode specimens representing both deep-sea and shallow water habitats; all fungal isolates displayed high pairwise sequence identities with published data in Genbank (99–100%) and unpublished high-throughput 454 environmental datasets (>95%). BLAST matches indicate marine fungal sequences amplified in this study broadly represent taxa within the phyla Ascomycota and Basidiomycota, and several phylotypes showed robust groupings with known taxa in phylogenetic topologies. In addition, some fungal phylotypes appeared to be present in disparate geographic habitats, suggesting cosmopolitan distributions or closely related species complexes in at least some marine fungi. The present study was only able to isolate fungal DNA from a restricted set of nematode taxa; further work is needed to fully investigate the taxonomic scope and function of nematode-fungal interactions

    Performance of cages as large animal-exclusion devices in the deep sea

    Get PDF
    Sedimentary, deep-sea communities include megafaunal animals (e.g., sea cucumbers, brittle stars, crabs) and demersal fishes, collectively termed the large, motile epifauna (LME). Individuals of the LME are common, and their biomass approximates that of the macrofauna. Based on analogies with shallow-water animals, they are likely to be sources of mortality for the infauna and to create spatial and temporal heterogeneity in the community. Given present theories of deep-sea community organization, such effects could be important. Unfortunately, this hypothesis has not been tested because of the difficulty of conducting experiments in the deep sea and because tools for manipulating the LME have not been developed. We studied the suitability of exclusion cages for this purpose at 780 m depth in San Diego Trough. We placed 16 cages of two mesh sizes for 4.5 months over regions of the seafloor that appeared free of LME. Time-lapse photographs of a cage and a control plot coupled with observations of all cages at the end of the experiment indicated that small (1.27-cm × 1.27-cm square)-mesh cages were effective at excluding LME. Further, the cages were essentially free of cage artifacts that have been reported in shallow-water studies. Large, mobile and disruptive animals (e.g., fishes, crabs) did not establish long-term residence adjacent to or on the cages. Bio-fouling slightly reduced the open surface area of the cage mesh, potentially reducing flow through the cage, but the composition of surface sediments in terms of organic C and N, phytoplankton-derived pigments, and grain size was indistinguishable between cages and control areas. Activities of excess 234Th were significantly higher (average = 37%) inside of small-mesh cages, which might suggest enhanced particulate deposition inside cages. However, this measurement was an artifact of experimental manipulation. Particles that accumulated on the cage during the experiment were dislodged and settled to the seafloor when the cage was opened just prior to sampling. These particles would have been highly enriched in 234Th, and their inclusion in core samples artificially inflated the calculated sediment accumulation rates inside cages. Therefore, the cages performed well; they excluded the targeted LME without causing artifacts and thus should be useful for experimental study of a group of animals that may have substantial impact on the structure and organization of deep-sea communities

    Darkness visible: reflections on underground ecology

    Get PDF
    1 Soil science and ecology have developed independently, making it difficult for ecologists to contribute to urgent current debates on the destruction of the global soil resource and its key role in the global carbon cycle. Soils are believed to be exceptionally biodiverse parts of ecosystems, a view confirmed by recent data from the UK Soil Biodiversity Programme at Sourhope, Scotland, where high diversity was a characteristic of small organisms, but not of larger ones. Explaining this difference requires knowledge that we currently lack about the basic biology and biogeography of micro-organisms. 2 It seems inherently plausible that the high levels of biological diversity in soil play some part in determining the ability of soils to undertake ecosystem-level processes, such as carbon and mineral cycling. However, we lack conceptual models to address this issue, and debate about the role of biodiversity in ecosystem processes has centred around the concept of functional redundancy, and has consequently been largely semantic. More precise construction of our experimental questions is needed to advance understanding. 3 These issues are well illustrated by the fungi that form arbuscular mycorrhizas, the Glomeromycota. This ancient symbiosis of plants and fungi is responsible for phosphate uptake in most land plants, and the phylum is generally held to be species-poor and non-specific, with most members readily colonizing any plant species. Molecular techniques have shown both those assumptions to be unsafe, raising questions about what factors have promoted diversification in these fungi. One source of this genetic diversity may be functional diversity. 4 Specificity of the mycorrhizal interaction between plants and fungi would have important ecosystem consequences. One example would be in the control of invasiveness in introduced plant species: surprisingly, naturalized plant species in Britain are disproportionately from mycorrhizal families, suggesting that these fungi may play a role in assisting invasion. 5 What emerges from an attempt to relate biodiversity and ecosystem processes in soil is our extraordinary ignorance about the organisms involved. There are fundamental questions that are now answerable with new techniques and sufficient will, such as how biodiverse are natural soils? Do microbes have biogeography? Are there rare or even endangered microbes

    Imagining Sisyphus happy: DNA barcoding and the unnamed majority

    Get PDF
    The vast majority of life on the Earth is physically small, and is classifiable as micro- or meiobiota. These organisms are numerically dominant and it is likely that they are also abundantly speciose. By contrast, the vast majority of taxonomic effort has been expended on ‘charismatic megabionts’: larger organisms where a wealth of morphology has facilitated Linnaean species definition. The hugely successful Linnaean project is unlikely to be extensible to the totality of approximately 10 million species in a reasonable time frame and thus alternative toolkits and methodologies need to be developed. One such toolkit is DNA barcoding, particularly in its metabarcoding or metagenetics mode, where organisms are identified purely by the presence of a diagnostic DNA sequence in samples that are not processed for morphological identification. Building on secure Linnaean foundations, classification of unknown (and unseen) organisms to molecular operational taxonomic units (MOTUs) and deployment of these MOTUs in biodiversity science promises a rewarding resolution to the Sisyphean task of naming all the world's species. This article is part of the themed issue ‘From DNA barcodes to biomes’

    Campus Mental Health: Implications for Instructors Supporting Students

    Get PDF
    The recent escalation in student suicides due to mental health problems has encouraged higher education institutions to not only modify their overall support structures, but to also (re)define the role of faculty and staff. Despite the increased attention given to student mental health in Canadian higher education institutions, little is known and understood about how instructors view their role as supporters or promoters of student mental health. The purpose of this study was to explore the role of college instructors in supporting students with mental health problems or illnesses. Participants were 42 instructors between the ages of 25 to 64 from Molize College in Toronto, Ontario. Qualitative ethnography was employed to gather data from participants, specifically through a survey questionnaire and interviews. A constructivist framework was adopted to analyze and understand the values, perceptions, meanings, and practices post-secondary instructors carry around notions of student mental health and intervention. Findings revealed that instructors were generally aware of student mental health concerns in post-secondary institutions, but that greater awareness was still warranted, namely in the areas of instructor mental health and location of support services. Findings also demonstrated that most instructors evaluated their knowledge and confidence in relation to student mental health as poor, which was often credited to limited relevant professional development and training. Additionally, data indicated that instructors carried skepticism towards the role of some student support services departments, as well as towards their own role when supporting the mental health and well-being of students. On a final note, findings revealed that instructors commonly employed four practices to support the mental health and well-being of students: conversation, referral, accommodations, and curricular inclusion and instruction. Future studies are encouraged to acknowledge the narratives of instructors through ethnographic inquiry, to allow for greater insights into their awareness, knowledge/confidence, responsibilities, and practices when it comes to supporting the mental health and well-being of students in higher education settings. Incorporating the instructor may not be a panacea for the shortcomings of current mental health policies and practices in higher education settings, but it can certainly represent a colossal step in that direction. KEYWORDS: student mental health, higher education, instructor

    Species composition and bycatches of a new crustacean trawl in Chile

    Get PDF
    The species composition and bycatches of a new trawl for crustaceans (Heterocarpus reedi, Cervimunida johni and Pleuroncodes monodon) was studied in central Chile between 2007 and 2009. The spatial and temporal variations of the catch composition were analyzed using univariate and multivariate comparison techniques. In 289 trawl hauls, 72 taxa were recorded, with target species accounting for most of the catch, while the bycatch consisted mainly of Merluccius gayi, Hippoglossina macrops, Coelorinchus aconcagua, Epigonus crassicaudus and Platymera gaudichaudii. 14 species of elasmobranchs were identified, and at least one of these species was present in 50% of the hauls made. The classification and ordination methods showed the existence of three groups, each one associated with a target species, with no significant spatial and temporal effects. The information obtained in this study represents the basis for setting targets in order to reduce the bycatch captured by this trawl. The focused strategy on the most recurring and sensitive species for these fisheries is also discussed. (C) 2011 Elsevier B.V. All rights reserved

    How Many Species Are There on Earth and in the Ocean?

    Get PDF
    The diversity of life is one of the most striking aspects of our planet; hence knowing how many species inhabit Earth is among the most fundamental questions in science. Yet the answer to this question remains enigmatic, as efforts to sample the world's biodiversity to date have been limited and thus have precluded direct quantification of global species richness, and because indirect estimates rely on assumptions that have proven highly controversial. Here we show that the higher taxonomic classification of species (i.e., the assignment of species to phylum, class, order, family, and genus) follows a consistent and predictable pattern from which the total number of species in a taxonomic group can be estimated. This approach was validated against well-known taxa, and when applied to all domains of life, it predicts ∼8.7 million (±1.3 million SE) eukaryotic species globally, of which ∼2.2 million (±0.18 million SE) are marine. In spite of 250 years of taxonomic classification and over 1.2 million species already catalogued in a central database, our results suggest that some 86% of existing species on Earth and 91% of species in the ocean still await description. Renewed interest in further exploration and taxonomy is required if this significant gap in our knowledge of life on Earth is to be closed

    Deep-Sea Fish Distribution Varies between Seamounts: Results from a Seamount Complex off New Zealand

    Get PDF
    Fish species data from a complex of seamounts off New Zealand termed the “Graveyard Seamount Complex’ were analysed to investigate whether fish species composition varied between seamounts. Five seamount features were included in the study, with summit depths ranging from 748–891 m and elevation from 189–352 m. Measures of fish species dominance, rarity, richness, diversity, and similarity were examined. A number of factors were explored to explain variation in species composition, including latitude, water temperature, summit depth, depth at base, elevation, area, slope, and fishing effort. Depth at base and slope relationships were significant with shallow seamounts having high total species richness, and seamounts with a more gradual slope had high mean species richness. Species similarity was modelled and showed that the explanatory variables were driven primarily by summit depth, as well as by the intensity of fishing effort and elevation. The study showed that fish assemblages on seamounts can vary over very small spatial scales, in the order of several km. However, patterns of species similarity and abundance were inconsistent across the seamounts examined, and these results add to a growing literature suggesting that faunal communities on seamounts may be populated from a broad regional species pool, yet show considerable variation on individual seamounts

    Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review

    Get PDF
    Background: Here, insight is provided into the present knowledge on free-living nematodes associated with chemosynthetic environments in the deep sea. It was investigated if the same trends of high standing stock, low diversity, and the dominance of a specialized fauna, as observed for macro-invertebrates, are also present in the nematodes in both vents and seeps. Methodology: This review is based on existing literature, in combination with integrated analysis of datasets, obtained through the Census of Marine Life program on Biogeography of Deep-Water Chemosynthetic Ecosystems (ChEss). Findings: Nematodes are often thriving in the sulphidic sediments of deep cold seeps, with standing stock values ocassionaly exceeding largely the numbers at background sites. Vents seem not characterized by elevated densities. Both chemosynthetic driven ecosystems are showing low nematode diversity, and high dominance of single species. Genera richness seems inversely correlated to vent and seep fluid emissions, associated with distinct habitat types. Deep-sea cold seeps and hydrothermal vents are, however, highly dissimilar in terms of community composition and dominant taxa. There is no unique affinity of particular nematode taxa with seeps or vents. Conclusions: It seems that shallow water relatives, rather than typical deep-sea taxa, have successfully colonized the reduced sediments of seeps at large water depth. For vents, the taxonomic similarity with adjacent regular sediments is much higher, supporting rather the importance of local adaptation, than that of long distance distribution. Likely the ephemeral nature of vents, its long distance offshore and the absence of pelagic transport mechanisms, have prevented so far the establishment of a successful and typical vent nematode fauna. Some future perspectives in meiofauna research are provided in order to get a more integrated picture of vent and seep biological processes, including all components of the marine ecosystem
    • …
    corecore