773 research outputs found
Realization and Characterization of a Four-Channel Integrated Optical Young Interferometer
In this paper, we report the realization and characterization of a four-channel integrated optical Young interferometer (YI), which enables simultaneous and independent monitoring of three binding processes. The simultaneous and independent measurement of three different glucose concentrations shows the multi-purpose feature of such device. The phase resolution for different pairs of channels was /spl sim/1/spl times/10/sup -4/ fringes, which corresponds to a refractive index resolution of /spl sim/8.5/spl times/10/sup -8/ . The observed errors, which are caused due to mismatching of spatial frequencies of individual interference patterns with those determined from the CCD camera, have been reduced by using different reduction schemes. In addition, we have investigated a novel method for discrimination of the refractive index change from the thickness of a bound layer during an immunoreaction, as well as measuring the temperature change the takes place during such a process
Tidal Heating of Extra-Solar Planets
Extra-solar planets close to their host stars have likely undergone
significant tidal evolution since the time of their formation. Tides probably
dominated their orbital evolution once the dust and gas had cleared away, and
as the orbits evolved there was substantial tidal heating within the planets.
The tidal heating history of each planet may have contributed significantly to
the thermal budget that governed the planet's physical properties, including
its radius, which in many cases may be measured by observing transit events.
Typically, tidal heating increases as a planet moves inward toward its star and
then decreases as its orbit circularizes. Here we compute the plausible heating
histories for several planets with measured radii, using the same tidal
parameters for the star and planet that had been shown to reconcile the
eccentricity distribution of close-in planets with other extra-solar planets.
Several planets are discussed, including for example HD 209458 b, which may
have undergone substantial tidal heating during the past billion years, perhaps
enough to explain its large measured radius. Our models also show that GJ 876 d
may have experienced tremendous heating and is probably not a solid, rocky
planet. Theoretical models should include the role of tidal heating, which is
large, but time-varying.Comment: Accepted for publication to Ap
Changes in wave climate over the northwest European shelf seas during the last 12,000 years
Because of the depth attenuation of wave orbital velocity, wave-induced bed shear stress is much more sensitive to changes in total water depth than tidal-induced bed shear stress. The ratio between wave- and tidal-induced bed shear stress in many shelf sea regions has varied considerably over the recent geological past because of combined eustatic changes in sea level and isostatic adjustment. In order to capture the high-frequency nature of wind events, a two-dimensional spectral wave model is here applied at high temporal resolution to time slices from 12 ka BP to present using paleobathymetries of the NW European shelf seas. By contrasting paleowave climates and bed shear stress distributions with present-day conditions, the model results demonstrate that, in regions of the shelf seas that remained wet continuously over the last 12,000 years, annual root-mean-square (rms) and peak wave heights increased from 12 ka BP to present. This increase in wave height was accompanied by a large reduction in the annual rms wave- induced bed shear stress, primarily caused by a reduction in the magnitude of wave orbital velocity penetrating to the bed for increasing relative sea level. In regions of the shelf seas which remained wet over the last 12,000 years, the annual mean ratio of wave- to (M-2) tidal-induced bed shear stress decreased from 1 (at 12 ka BP) to its present-day value of 0.5. Therefore compared to present- day conditions, waves had a more important contribution to large-scale sediment transport processes in the Celtic Sea and the northwestern North Sea at 12 ka BP
A spot-size transformer for fiber-chip coupling in sensor applications at 633 nm in silicon oxynitride
A mode-size adapter was designed, fabricated in SiON/SiO2 and tested. It consists of a laterally tapered SiON waveguide having a step-wise decrease in thickness towards the taper point which may have up to 0.5 ¿m residual widt
The geomorphological setting of some of Scotland's east coast freshwater mills: a comment on Downward and Skinner (2005) ‘Working rivers: the geomorphological legacy...’
Many of the water mills on Scotland's east coast streams, unlike those discussed recently by Downward and Skinner (2005 Area 37 138–47), are found in predominantly bedrock reaches immediately downstream of knickpoints (i.e. bedrock steps). Bedrock knickpoints in the lower reaches of Scottish rivers are a widespread fluvial response to the glacio-isostatic rebound of northern Britain. These steps in the river profile propagate headward over time, but for intervals of a few centuries or so they are sufficiently stable to be exploited for the elevational fall necessary to power the mill wheel. Many of these mills were apparently powered by ‘run-of-the-river’, as are some today that formerly had mill dams. The typical lack of sediment storage along the erosional lower reaches of many Scottish rivers means that failure of mill structures in Scotland will probably have less dramatic geomorphological and management implications than those suggested by Downward and Skinner for southern English rivers
Integrated optical directional coupler biosensor
We present measurements on biomolecular binding reactions, using a new type of integrated optical biosensor based on a planar directional coupler structure. The device is fabricated by Ag+-Na+ ion-exchange in glass and definition of the sensing region is achieved by use of transparent fluoropolymer isolation layers formed by thermal evaporation. The suitability of the sensor for application to the detection of environmental pollutants is considered
Seamount loading and stress in ocean lithosphere. 2. Viscoelastic and elastic-viscoelastic
Analytical solutions are presented for the deformation and stress state of a horizontally stratified earth subject to normal loads of size and wavelength that are characteristic of seamounts. The models investigated include layered elastic plates, homogeneous viscoelastic plates, and elastic over viscoelastic models. In all cases the composite models overlie an inviscid half space. The principal advantage of the laminated elastic models over homogeneous elastic plates is that they can result in a substantial reduction in the maximum stress differences in those parts of the plate least capable of supporting large stress differences. -Author
Photonic crystal resonator integrated in a microfluidic system
We report on a novel optofluidic system consisting of a silica-based 1D
photonic crystal, integrated planar waveguides and electrically insulated
fluidic channels. An array of pillars in a microfluidic channel designed for
electrochromatography is used as a resonator for on-column label-free
refractive index detection. The resonator was fabricated in a silicon
oxynitride platform, to support electroosmotic flow, and operated at 1.55
microns. Different aqueous solutions of ethanol with refractive indices ranging
from n = 1.3330 to 1.3616 were pumped into the column/resonator and the
transmission spectra were recorded. Linear shifts of the resonant wavelengths
yielded a maximum sensitivity of 480 nm/RIU and a minimum difference of 0.007
RIU was measured
Aeolianite and barrier dune construction spanning the last two glacial-interglacial cycles from the southern Cape coast, South Africa
The southern Cape region of South Africa has extensive coastal aeolianites and barrier dunes. Whilst previously reported, limited knowledge of their age has precluded an understanding of their relationship with the climatic and sea-level fluctuations that have taken place during the Late Quaternary. Sedimentological and geomorphological studies combined with an optical dating programme reveal aeolianite development and barrier dune construction spanning at least the last two glacial–interglacial cycles. Aeolianite deposition has occurred on the southern Cape coast at ca 67–80, 88–90, 104–128, 160–189 and >200 ka before the present. Using this and other published data coupled with a better understanding of Late Quaternary sea-level fluctuations and palaeocoastline configurations, it is concluded that these depositional phases appear to be controlled by interglacial and subsequent interstadial sea-level high stands. These marine transgressions and regressions allowed onshore carbonate-rich sediment movement and subsequent aeolian reworking to occur at similar points in the landscape on a number of occasions. The lack of carbonates in more recent dunes (Oxygen Isotope Stages 1/2 and 4/5) is attributed not to leaching but to changes to carbonate production in the sediment source area caused by increased terrigenous material and/or changes in the balance between the warm Agulhas and nutrient-rich Benguela ocean current
- …