71 research outputs found

    Heat capacity of multilayer methane on graphite: Phase transitions in the first four layers

    Get PDF
    We present high-resolution heat-capacity data for methane adsorbed on graphite for nominal coverages of 0.87 to 7 layers, from T = 70 to 120 K. For films thicker than 1.1 layers, we find capillary condensate coexisting with the film. We have performed heat-capacity scans on films formed by both adsorption and desorption. By comparing the locations of the phase transitions in the chemical potential mu vs T plane, we find that there is no significant interaction between the film and the capillary condensate. The heat-capacity signals from the films map out an unexpectedly rich set of phenomena for the second, third, and fourth layers, including a two-dimensional triple point and a liquid-gas coexistence region for each layer. The fourth-layer critical temperature we find is lower than previous values found by vapor-pressure isotherms

    Uncertainty-Informed Renewable Energy Scheduling: A Scalable Bilevel Framework

    Full text link
    Accommodating the uncertainty of variable renewable energy sources (VRES) in electricity markets requires sophisticated and scalable tools to achieve market efficiency. To account for the uncertain imbalance costs in the real-time market while remaining compatible with the existing sequential market-clearing structure, our work adopts an uncertainty-informed adjustment toward the VRES contract quantity scheduled in the day-ahead market. This mechanism requires solving a bilevel problem, which is computationally challenging for practical large-scale systems. To improve the scalability, we propose a technique based on strong duality and McCormick envelopes, which relaxes the original problem to linear programming. We conduct numerical studies on both IEEE 118-bus and 1814-bus NYISO systems. Results show that the proposed relaxation can achieve good performance in accuracy (0.7%-gap in the system cost wrt. the least-cost stochastic clearing benchmark) and scalability (solving the NYISO system in minutes). Furthermore, the benefit of the uncertainty-informed VRES-quantity adjustment is more significant under higher levels of VRES (e.g., 70%), under which the system cost can be reduced substantially compared to a myopic day-ahead offer strategy of VRES.Comment: Submitted to IEEE PES general meeting 202

    The 2017 May 20th^{\rm th} stellar occultation by the elongated centaur (95626) 2002 GZ32_{32}

    Full text link
    We predicted a stellar occultation of the bright star Gaia DR1 4332852996360346368 (UCAC4 385-75921) (mV_{\rm V}= 14.0 mag) by the centaur 2002 GZ32_{32} for 2017 May 20th^{\rm th}. Our latest shadow path prediction was favourable to a large region in Europe. Observations were arranged in a broad region inside the nominal shadow path. Series of images were obtained with 29 telescopes throughout Europe and from six of them (five in Spain and one in Greece) we detected the occultation. This is the fourth centaur, besides Chariklo, Chiron and Bienor, for which a multi-chord stellar occultation is reported. By means of an elliptical fit to the occultation chords we obtained the limb of 2002 GZ32_{32} during the occultation, resulting in an ellipse with axes of 305 ±\pm 17 km ×\times 146 ±\pm 8 km. From this limb, thanks to a rotational light curve obtained shortly after the occultation, we derived the geometric albedo of 2002 GZ32_{32} (pVp_{\rm V} = 0.043 ±\pm 0.007) and a 3-D ellipsoidal shape with axes 366 km ×\times 306 km ×\times 120 km. This shape is not fully consistent with a homogeneous body in hydrostatic equilibrium for the known rotation period of 2002 GZ32_{32}. The size (albedo) obtained from the occultation is respectively smaller (greater) than that derived from the radiometric technique but compatible within error bars. No rings or debris around 2002 GZ32_{32} were detected from the occultation, but narrow and thin rings cannot be discarded.Comment: Accepted for publication in MNRAS (8-Dec.-2020), 15 pages, 9 figure

    Costs and benefits of automation for astronomical facilities

    Full text link
    The Observatorio Astrof\'isico de Javalambre (OAJ{\dag}1) in Spain is a young astronomical facility, conceived and developed from the beginning as a fully automated observatory with the main goal of optimizing the processes in the scientific and general operation of the Observatory. The OAJ has been particularly conceived for carrying out large sky surveys with two unprecedented telescopes of unusually large fields of view (FoV): the JST/T250, a 2.55m telescope of 3deg field of view, and the JAST/T80, an 83cm telescope of 2deg field of view. The most immediate objective of the two telescopes for the next years is carrying out two unique photometric surveys of several thousands square degrees, J-PAS{\dag}2 and J-PLUS{\dag}3, each of them with a wide range of scientific applications, like e.g. large structure cosmology and Dark Energy, galaxy evolution, supernovae, Milky Way structure, exoplanets, among many others. To do that, JST and JAST are equipped with panoramic cameras under development within the J-PAS collaboration, JPCam and T80Cam respectively, which make use of large format (~ 10k x 10k) CCDs covering the entire focal plane. This paper describes in detail, from operations point of view, a comparison between the detailed cost of the global automation of the Observatory and the standard automation cost for astronomical facilities, in reference to the total investment and highlighting all benefits obtained from this approach and difficulties encountered. The paper also describes the engineering development of the overall facilities and infrastructures for the fully automated observatory and a global overview of current status, pinpointing lessons learned in order to boost observatory operations performance, achieving scientific targets, maintaining quality requirements, but also minimizing operation cost and human resources.Comment: Global Observatory Control System GOC

    J-PLUS: The javalambre photometric local universe survey

    Get PDF
    ABSTRACT: TheJavalambrePhotometric Local UniverseSurvey (J-PLUS )isanongoing 12-band photometricopticalsurvey, observingthousands of squaredegrees of theNorthernHemispherefromthededicated JAST/T80 telescope at the Observatorio Astrofísico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg2 mountedon a telescopewith a diameter of 83 cm, and isequippedwith a uniquesystem of filtersspanningtheentireopticalrange (3500–10 000 Å). Thisfiltersystemis a combination of broad-, medium-, and narrow-band filters, optimallydesigned to extracttherest-framespectralfeatures (the 3700–4000 Å Balmer break region, Hδ, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizingstellartypes and delivering a low-resolutionphotospectrumforeach pixel of theobservedsky. With a typicaldepth of AB ∼21.25 mag per band, thisfilter set thusallowsforanunbiased and accuratecharacterization of thestellarpopulation in our Galaxy, itprovidesanunprecedented 2D photospectralinformationforall resolved galaxies in the local Universe, as well as accuratephoto-z estimates (at the δ z/(1 + z)∼0.005–0.03 precisionlevel) formoderatelybright (up to r ∼ 20 mag) extragalacticsources. Whilesomenarrow-band filters are designedforthestudy of particular emissionfeatures ([O II]/λ3727, Hα/λ6563) up to z < 0.017, theyalsoprovidewell-definedwindowsfortheanalysis of otheremissionlines at higherredshifts. As a result, J-PLUS has thepotential to contribute to a widerange of fields in Astrophysics, both in thenearbyUniverse (MilkyWaystructure, globular clusters, 2D IFU-likestudies, stellarpopulations of nearby and moderate-redshiftgalaxies, clusters of galaxies) and at highredshifts (emission-line galaxies at z ≈ 0.77, 2.2, and 4.4, quasi-stellarobjects, etc.). Withthispaper, wereleasethefirst∼1000 deg2 of J-PLUS data, containingabout 4.3 millionstars and 3.0 milliongalaxies at r <  21mag. With a goal of 8500 deg2 forthe total J-PLUS footprint, thesenumbers are expected to rise to about 35 millionstars and 24 milliongalaxiesbytheend of thesurvey.Funding for the J-PLUS Project has been provided by the Governments of Spain and Aragón through the Fondo de Inversiones de Teruel, the Spanish Ministry of Economy and Competitiveness (MINECO; under grants AYA2017-86274-P, AYA2016-77846-P, AYA2016-77237-C3-1-P, AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, AGAUR grant SGR-661/2017, and ICTS-2009-14), and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685

    The multichord stellar occultation by the centaur Bienor on January 11, 2019

    Get PDF
    Within our program of physical characterization of trans-Neptunian objects and centaurs, we predicted a stellar occultation by the centaur (54598) Bienor to occur on January 11, 2019, with good observability potential. We obtained high accuracy astrometric data to refine the prediction, resulting in a shadow path favorable for the Iberian Peninsula. This encouraged us to carry out an occultation observation campaign that resulted in five positive detections from four observing sites. This is the fourth centaur for which a multichord (more than two chords) stellar occultation has been observed so far, the other three being (2060) Chiron, (10199) Chariklo, and (95626) 2002 GZ32. From the analysis of the occultation chords, combined with the rotational light curve obtained shortly after the occultation, we determined that Bienor has an area-equivalent diameter of 150 +/- 20 km. This diameter is ~ 30 km smaller than the one obtained from thermal measurements. The position angle of the short axis of the best fitting ellipse obtained through the analysis of the stellar occultation does not match that of the spin axis derived from long-term photometric models. We also detected a strong irregularity in one of the minima of the rotational light curve that is present no matter the aspect angle at which the observations were done.We present different scenarios to reconcile the results from the different techniques.We did not detect secondary dropsrelated to potential rings or satellites. Nonetheless, similar rings in size to that of Chariklo’s cannot be discarded due to low data accuracy
    corecore