189 research outputs found

    Genetic analysis of haemophilia A in Bulgaria

    Get PDF
    BACKGROUND: Haemophilias are the most common hereditary severe disorders of blood clotting. In families afflicted with heamophilia, genetic analysis provides opportunities to prevent recurrence of the disease. This study establishes a diagnostical strategy for carriership determination and prenatal diagnostics of haemophilia A in Bulgarian haemophilic population. METHODS: A diagnostical strategy consisting of screening for most common mutations in the factor VIII gene and analysis of a panel of eight linked to the factor VIII gene locus polymorphisms was established. RESULTS: Polymorphic analysis for carrier status determination of haemophilia A was successful in 30 families out of 32 (94%). Carrier status was determined in 25 of a total of 28 women at risk (89%). Fourteen prenatal diagnoses in women at high risk of having a haemophilia A – affected child were performed, resulting in 6 healthy boys and 5 girls. CONCLUSION: The compound approach proves to be a highly informative and cost-effective strategy for prevention of recurrence of haemophilia A in Bulgaria. DNA analysis facilitates carriership determination and subsequent prenatal diagnosis in the majority of Bulgarian families affected by haemophilia A

    Eighteen Years of Molecular Genotyping the Hemophilia Inversion Hotspot: From Southern Blot to Inverse Shifting-PCR

    Get PDF
    The factor VIII gene (F8) intron 22 inversion (Inv22) is a paradigmatic duplicon-mediated rearrangement, found in about one half of patients with severe hemophilia A worldwide. The identification of this prevalent cause of hemophilia was delayed for nine years after the F8 characterization in 1984. The aim of this review is to present the wide diversity of practical approaches that have been developed for genotyping the Inv22 (and related int22h rearrangements) since discovery in 1993. The sequence— Southern blot, long distance-PCR and inverse shifting-PCR—for Inv22 genotyping is an interesting example of scientific ingenuity and evolution in order to resolve challenging molecular diagnostic problems

    Expression of the myosin heavy chain IIB gene in porcine skeletal muscle: the role of the CArG-box promoter response element

    Get PDF
    Due to its similarity to humans, the pig is increasingly being considered as a good animal model for studying a range of human diseases. Despite their physiological similarities, differential expression of the myosin heavy chain (MyHC) IIB gene (MYH4) exists in the skeletal muscles of these species, which is associated with a different muscle phenotype. The expression of different MyHC isoforms is a critical determinant of the contractile and metabolic characteristics of the muscle fibre. We aimed to elucidate whether a genomic mechanism was responsible for the drastically different expression of MYH4 between pigs and humans, thus improving our understanding of the pig as a model for human skeletal muscle research. We utilized approximately 1 kb of the MYH4 promoter from a domestic pig and a human (which do and do not express MYH4, respectively) to elucidate the role of the promoter sequence in regulating the high expression of MYH4 in porcine skeletal muscle. We identified a 3 bp genomic difference within the proximal CArG and Ebox region of the MYH4 promoter of pigs and humans that dictates the differential activity of these promoters during myogenesis. Subtle species-specific genomic differences within the CArG-box region caused differential protein-DNA interactions at this site and is likely accountable for the differential MYH4 promoter activity between pigs and humans. We propose that the genomic differences identified herein explain the differential activity of the MYH4 promoter of pigs and humans, which may contribute to the differential expression patterns displayed in these otherwise physiologically similar mammals. Further, we report that both the pig and human MYH4 promoters can be induced by MyoD over- expression, but the capacity to activate the MYH4 promoter is largely influenced by the 3 bp difference located within the CArG-box region of the proximal MYH4 promoter

    Mutation spectrum of 122 hemophilia A families from Taiwanese population by LD-PCR, DHPLC, multiplex PCR and evaluating the clinical application of HRM

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemophilia A represents the most common and severe inherited hemorrhagic disorder. It is caused by mutations in the F8 gene, which leads to a deficiency or dysfunctional factor VIII protein, an essential cofactor in the factor X activation complex.</p> <p>Methods</p> <p>We used long-distance polymerase chain reaction and denaturing high performance liquid chromatography for mutation scanning of the F8 gene. We designed the competitive multiplex PCR to identify the carrier with exonal deletions. In order to facilitate throughput and minimize the cost of mutation scanning, we also evaluated a new mutation scanning technique, high resolution melting analysis (HRM), as an alternative screening method.</p> <p>Results</p> <p>We presented the results of detailed screening of 122 Taiwanese families with hemophilia A and reported twenty-nine novel mutations. There was one family identified with whole exons deletion, and the carriers were successfully recognized by multiplex PCR. By HRM, the different melting curve patterns were easily identified in 25 out of 28 cases (89%) and 15 out of 15 (100%) carriers. The sensitivity was 93 % (40/43). The overall mutation detection rate of hemophilia A was 100% in this study.</p> <p>Conclusion</p> <p>We proposed a diagnostic strategy for hemophilia A genetic diagnosis. We consider HRM as a powerful screening tool that would provide us with a more cost-effective protocol for hemophilia A mutation identification.</p

    KoVariome: Korean National Standard Reference Variome database of whole genomes with comprehensive SNV, indel, CNV, and SV analyses

    Get PDF
    High-coverage whole-genome sequencing data of a single ethnicity can provide a useful catalogue of population-specific genetic variations, and provides a critical resource that can be used to more accurately identify pathogenic genetic variants. We report a comprehensive analysis of the Korean population, and present the Korean National Standard Reference Variome (KoVariome). As a part of the Korean Personal Genome Project (KPGP), we constructed the KoVariome database using 5.5 terabases of whole genome sequence data from 50 healthy Korean individuals in order to characterize the benign ethnicity-relevant genetic variation present in the Korean population. In total, KoVariome includes 12.7M single-nucleotide variants (SNVs), 1.7M short insertions and deletions (indels), 4K structural variations (SVs), and 3.6K copy number variations (CNVs). Among them, 2.4M (19%) SNVs and 0.4M (24%) indels were identified as novel. We also discovered selective enrichment of 3.8M SNVs and 0.5M indels in Korean individuals, which were used to filter out 1,271 coding-SNVs not originally removed from the 1,000 Genomes Project when prioritizing disease-causing variants. KoVariome health records were used to identify novel disease-causing variants in the Korean population, demonstrating the value of high-quality ethnic variation databases for the accurate interpretation of individual genomes and the precise characterization of genetic variation

    Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript

    Get PDF
    Since the discovery of chromosomal inversions almost 100 years ago, how they are maintained in natural populations has been a highly debated issue. One of the hypotheses is that inversion breakpoints could affect genes and modify gene expression levels, although evidence of this came only from laboratory mutants. In humans, a few inversions have been shown to associate with expression differences, but in all cases the molecular causes have remained elusive. Here, we have carried out a complete characterization of a new human polymorphic inversion and determined that it is specific to East Asian populations. In addition, we demonstrate that it disrupts the ZNF257 gene and, through the translocation of the first exon and regulatory sequences, creates a previously nonexistent fusion transcript, which together are associated to expression changes in several other genes. Finally, we investigate the potential evolutionary and phenotypic consequences of the inversion, and suggest that it is probably deleterious. This is therefore the first example of a natural polymorphic inversion that has position effects and creates a new chimeric gene, contributing to answer an old question in evolutionary biology

    Enhanced Treatment Technology: Phosphorus Removal

    No full text
    Eutrophication, the process of algae blooms due to large deposits of nitrate and phosphate fertilizers, has become a concern for agricultural and residential water ways in midwestern states. Algae blooms are harmful to the natural ecosystem and can have a negative effect on wildlife and humans. To combat this issue the Fund for Lake Michigan has begun implementing Agricultural Runoff Treatment Systems also known as ARTS. The main purpose of ARTS is to remove these harmful pollutants from storm water runoff while subsequently improving the overall quality of the watershed. Our collaboration\u27s goal is to find an effective ratio of Steel Slag and Engineered Zeolite to maximize the removal of phosphorus from a Green Bay area farm. To do so, different ratios were tested through adsorption column testing. We have found that the most effective weight ratio of zeolite and steel slag in this study was 5:3, removing 22-33% of dissolved phosphorus (DP), in lab run column tests. These results are promising due to the low levels of DP in the influent solution. If a valid method of desorption can be found, farms in the Midwest will be able to implement these low impact ARTS systems to combat the harmful side effects of using fertilizers for agriculture
    corecore