334 research outputs found

    Carotid beta stiffness association with thyroid function

    Get PDF
    Background: Thyroid hormone modulation of cardiovascular function has been associated with cardiovascular disease. Recent evidence suggests that free thyroxine (FT4) levels are associated with an increase in systemic arterial stiffness, but little is known about the effects of FT4 at the local level of the common carotid artery. β-stiffness index is a local elastic parameter usually determined by carotid ultrasound imaging. Methods: We conducted a cross-sectional analysis in the ProgeNIA cohort, including 4846 subjects across a broad age range. For the purpose of this study, we excluded subjects with increased thyrotropin (TSH) levels and those treated with levothyroxine or thyrostatic. We assessed β stiffness, strain, wall–lumen ratio, carotid cross-sectional area (CSA), and stress and flow in the right common carotid artery. We tested whether FT4, heart rate, and their interactions were associated with carotid parameters. Results: FT4 was positively and independently associated with β stiffness index (β = 0.026, p = 0.041), and had a negative association with strain (β = −0.025, p = 0.009). After adding heart rate and the interaction between FT4 and heart rate to the model, FT4 was still associated with the β stiffness index (β = 0.186, p = 0.06), heart rate was positively associated with the stiffness index (β = 0.389, p < 0.001) as well as their interaction (β = 0.271, p = 0.007). Conclusion: This study suggests that higher FT4 levels increase arterial stiffness at the common carotid level, consistent with a detrimental effect on elastic arteries. The effect of FT4 is likely to be primarily attributable to its effect on heart rate

    A novel conceptual model of heart rate autonomic modulation based on a small-world modular structure of the sinoatrial node

    Get PDF
    The present view on heartbeat initiation is that a primary pacemaker cell or a group of cells in the sinoatrial node (SAN) center paces the rest of the SAN and the atria. However, recent high-resolution imaging studies show a more complex paradigm of SAN function that emerges from heterogeneous signaling, mimicking brain cytoarchitecture and function. Here, we developed and tested a new conceptual numerical model of SAN organized similarly to brain networks featuring a modular structure with small-world topology. In our model, a lower rate module leads action potential (AP) firing in the basal state and during parasympathetic stimulation, whereas a higher rate module leads during β-adrenergic stimulation. Such a system reproduces the respective shift of the leading pacemaker site observed experimentally and a wide range of rate modulation and robust function while conserving energy. Since experimental studies found functional modules at different scales, from a few cells up to the highest scale of the superior and inferior SAN, the SAN appears to feature hierarchical modularity, i.e., within each module, there is a set of sub-modules, like in the brain, exhibiting greater robustness, adaptivity, and evolvability of network function. In this perspective, our model offers a new mainframe for interpreting new data on heterogeneous signaling in the SAN at different scales, providing new insights into cardiac pacemaker function and SAN-related cardiac arrhythmias in aging and disease

    Dilated Cardiomyopathy with Increased SR Ca2+ Loading Preceded by a Hypercontractile State and Diastolic Failure in the α1CTG Mouse

    Get PDF
    Mice over-expressing the α1−subunit (pore) of the L-type Ca2+ channel (α1CTG) by 4months (mo) of age exhibit an enlarged heart, hypertrophied myocytes, increased Ca2+ current and Ca2+ transient amplitude, but a normal SR Ca2+ load. With advancing age (8–11 mo), some mice demonstrate advanced hypertrophy but are not in congestive heart failure (NFTG), while others evolve to frank dilated congestive heart failure (FTG). We demonstrate that older NFTG myocytes exhibit a hypercontractile state over a wide range of stimulation frequencies, but maintain a normal SR Ca2+ load compared to age matched non-transgenic (NTG) myocytes. However, at high stimulation rates (2–4 Hz) signs of diastolic contractile failure appear in NFTG cells. The evolution of frank congestive failure in FTG is accompanied by a further increase in heart mass and myocyte size, and phospholamban and ryanodine receptor protein levels and phosphorylation become reduced. In FTG, the SR Ca2+ load increases and Ca2+ release following excitation, increases further. An enhanced NCX function in FTG, as reflected by an accelerated relaxation of the caffeine-induced Ca2+ transient, is insufficient to maintain a normal diastolic Ca2+ during high rates of stimulation. Although a high SR Ca2+ release following excitation is maintained, the hypercontractile state is not maintained at high rates of stimulation, and signs of both systolic and diastolic contractile failure appear. Thus, the dilated cardiomyopathy that evolves in this mouse model exhibits signs of both systolic and diastolic failure, but not a deficient SR Ca2+ loading or release, as occurs in some other cardiomyopathic models

    Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Get PDF
    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Age differences in physiological responses to self-paced and incremental V˙O2max\dot V O_{2max} testing

    Get PDF
    Purpose: A self-paced maximal exercise protocol has demonstrated higher V˙O2max\dot V O_{2max} values when compared against traditional tests. The aim was to compare physiological responses to this self-paced V˙O2max\dot V O_{2max} protocol (SPV) in comparison to a traditional ramp V˙O2max\dot V O_{2max} (RAMP) protocol in young (18–30 years) and old (50–75 years) participants. Methods: Forty-four participants (22 young; 22 old) completed both protocols in a randomised, counter-balanced, crossover design. The SPV included 5 × 2 min stages, participants were able to self-regulate their power output (PO) by using incremental ‘clamps’ in ratings of perceived exertion. The RAMP consisted of either 15 or 20 W min1^{−1}. Results: Expired gases, cardiac output (Q), stroke volume (SV), muscular deoxyhaemoglobin (deoxyHb) and electromyography (EMG) at the vastus lateralis were recorded throughout. Results demonstrated significantly higher V˙O2max\dot V O_{2max} in the SPV (49.68 ± 10.26 ml kg1^{−1} min1^{−1}) vs. the RAMP (47.70 ± 9.98 ml kg1^{−1} min1^{−1}) in the young, but not in the old group (>0.05). Q and SV were significantly higher in the SPV vs. the RAMP in the young (0.05). No differences seen in deoxyHb and EMG for either age groups (>0.05). Peak PO was significantly higher in the SPV vs. the RAMP in both age groups (<0.05). Conclusion: Findings demonstrate that the SPV produces higher V˙O2max\dot V O_{2max}, peak Q and SV values in the young group. However, older participants achieved similar V˙O2max\dot V O_{2max} values in both protocols, mostly likely due to age-related differences in cardiovascular responses to incremental exercise, despite them achieving a higher physiological workload in the SPV
    corecore