338 research outputs found

    Comparison of 2D debris-flow simulation models with field events

    Get PDF
    Three two-dimensional (2D) debris-flow simulation models are applied to two large well-documented debris-flow events which caused major deposition of solid material on the fan. The models are based on a Voellmy fluid rheology reflecting turbulent-like and basal frictional stresses, a quadratic rheologic formulation including Bingham, collisional and turbulent stresses, and a Herschel-Bulkley rheology representing a viscoplastic fluid. The rheologic or friction parameters of the models are either assumed a priori or adjusted to best match field observations. All three models are capable of reasonably reproducing the depositional pattern on the alluvial fan after the models have been calibrated using historical data from the torrent. Accurate representation of the channel and fan topography is especially important to achieve a good replication of the observed deposition patter

    Rest-UV Absorption Lines as Metallicity Estimator: the Metal Content of Star-Forming Galaxies at z~5

    Get PDF
    We measure a relation between the depth of four prominent rest-UV absorption complexes and metallicity for local galaxies and verify it up to z~3. We then apply this relation to a sample of 224 galaxies at 3.5 = 4.8) in COSMOS, for which unique UV spectra from DEIMOS and accurate stellar masses from SPLASH are available. The average galaxy population at z~5 and log(M/Msun) > 9 is characterized by 0.3-0.4 dex (in units of 12+log(O/H)) lower metallicities than at z~2, but comparable to z~3.5. We find galaxies with weak/no Ly-alpha emission to have metallicities comparable to z~2 galaxies and therefore may represent an evolved sub-population of z~5 galaxies. We find a correlation between metallicity and dust in good agreement with local galaxies and an inverse trend between metallicity and star-formation rate (SFR) consistent with observations at z~2. The relation between stellar mass and metallicity (MZ relation) is similar to z~3.5, however, there are indications of it being slightly shallower, in particular for the young, Ly-alpha emitting galaxies. We show that, within a "bathtub" approach, a shallower MZ relation is expected in the case of a fast (exponential) build-up of stellar mass with an e-folding time of 100-200 Myr. Due to this fast evolution, the process of dust production and metal enrichment as a function of mass could be more stochastic in the first billion years of galaxy formation compared to later times.Comment: 20 pages, 13 figures, 4 tables; Submitted to Ap

    A Coherent Study of Emission Lines from Broad-Band Photometry: Specific Star-Formation Rates and [OIII]/H{\beta} Ratio at 3 < z < 6

    Get PDF
    We measure the H{\alpha} and [OIII] emission line properties as well as specific star-formation rates (sSFR) of spectroscopically confirmed 3<z<6 galaxies in COSMOS from their observed colors vs. redshift evolution. Our model describes consistently the ensemble of galaxies including intrinsic properties (age, metallicity, star-formation history), dust-attenuation, and optical emission lines. We forward-model the measured H{\alpha} equivalent-widths (EW) to obtain the sSFR out to z~6 without stellar mass fitting. We find a strongly increasing rest-frame H{\alpha} EW that is flattening off above z~2.5 with average EWs of 300-600A at z~6. The sSFR is increasing proportional to (1+z)^2.4 at z<2.2 and (1+z)^1.5 at higher redshifts, indicative of a fast mass build-up in high-z galaxies within e-folding times of 100-200Myr at z~6. The redshift evolution at z>3 cannot be fully explained in a picture of cold accretion driven growth. We find a progressively increasing [OIII]{\lambda}5007/H{\beta} ratio out to z~6, consistent with the ratios in local galaxies selected by increasing H{\alpha} EW (i.e., sSFR). This demonstrates the potential of using "local high-z analogs" to investigate the spectroscopic properties and relations of galaxies in the re-ionization epoch.Comment: 18 pages, 11 figures, 3 table

    Slab segmentation controls the interplate slip motion in the SW Hellenic subduction: New insight from the 2008Mw 6.8 Methoni interplate earthquake

    Get PDF
    We present an integrated approach of the seismic structure and activity along the offshore SW Hellenic subduction from combined observations of marine and land seismic stations. Our imaging of the slab top topography from teleseismic receiver function analysis at ocean bottom seismometers supports a trenchward continuation of the along-dip slab faults beneath the Peloponnesus. We further show that their morphostructural control accounts for the backstepping of the thrust contact of the Mediterranean Ridge accretionary wedge over the upper plate. Local seismic activity offshore SW Peloponnesus constrained by ocean bottom seismometer observations reveals a correlation with specific features of the forearc: the Matapan Troughs. We study the Mw6.8 14.02.2008 interplate earthquake offshore SW Peloponnesus and show that its nucleation, rupture zone, and aftershocks sequence are confined to one slab panel between two adjacent along-dip faults and are thus controlled by not only the offshore slab top segmentation but also the upper plate sea-bottom morphology

    Data Deluge in Astrophysics: Photometric Redshifts as a Template Use Case

    Get PDF
    Astronomy has entered the big data era and Machine Learning based methods have found widespread use in a large variety of astronomical applications. This is demonstrated by the recent huge increase in the number of publications making use of this new approach. The usage of machine learning methods, however is still far from trivial and many problems still need to be solved. Using the evaluation of photometric redshifts as a case study, we outline the main problems and some ongoing efforts to solve them.Comment: 13 pages, 3 figures, Springer's Communications in Computer and Information Science (CCIS), Vol. 82

    The SPLASH Survey: Quiescent Galaxies Are More Strongly Clustered but Are Not Necessarily Located in High-density Environments

    Get PDF
    We use the stellar-mass-selected catalog from the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) in the COSMOS field to study the environments of galaxies via galaxy density and clustering analyses up to z ~ 2.5. The clustering strength of quiescent galaxies exceeds that of star-forming galaxies, implying that quiescent galaxies are preferentially located in more massive halos. When using local density measurement, we find a clear positive quiescent fraction–density relation at z 1.5, the quiescent fraction depends little on the local density, even though clustering shows that quiescent galaxies are in more massive halos. We argue that at high redshift the typical halo size falls below 10^(13)M⊙, where intrinsically the local density measurements are so varied that they do not trace the halo mass. Our results thus suggest that in the high-redshift universe, halo mass may be the key in quenching the star formation in galaxies, rather than the conventionally measured galaxy density

    An ALMA survey of submillimetre galaxies in the COSMOS field: The extent of the radio-emitting region revealed by 3 GHz imaging with the Very Large Array

    Get PDF
    We determine the radio size distribution of a large sample of 152 SMGs in COSMOS that were detected with ALMA at 1.3 mm. For this purpose, we used the observations taken by the VLA-COSMOS 3 GHz Large Project. One hundred and fifteen of the 152 target SMGs were found to have a 3 GHz counterpart. The median value of the major axis FWHM at 3 GHz is derived to be 4.6±0.44.6\pm0.4 kpc. The radio sizes show no evolutionary trend with redshift, or difference between different galaxy morphologies. We also derived the spectral indices between 1.4 and 3 GHz, and 3 GHz brightness temperatures for the sources, and the median values were found to be α=−0.67\alpha=-0.67 and TB=12.6±2T_{\rm B}=12.6\pm2 K. Three of the target SMGs, which are also detected with the VLBA, show clearly higher brightness temperatures than the typical values. Although the observed radio emission appears to be predominantly powered by star formation and supernova activity, our results provide a strong indication of the presence of an AGN in the VLBA and X-ray-detected SMG AzTEC/C61. The median radio-emitting size we have derived is 1.5-3 times larger than the typical FIR dust-emitting sizes of SMGs, but similar to that of the SMGs' molecular gas component traced through mid-JJ line emission of CO. The physical conditions of SMGs probably render the diffusion of cosmic-ray electrons inefficient, and hence an unlikely process to lead to the observed extended radio sizes. Instead, our results point towards a scenario where SMGs are driven by galaxy interactions and mergers. Besides triggering vigorous starbursts, galaxy collisions can also pull out the magnetised fluids from the interacting disks, and give rise to a taffy-like synchrotron-emitting bridge. This provides an explanation for the spatially extended radio emission of SMGs, and can also cause a deviation from the well-known IR-radio correlation.Comment: 32 pages (incl. 5 appendices), 17 figures, 7 tables; accepted for publication in A&A; abstract abridged for arXi

    Genetic Relations Between the Aves Ridge and the Grenada Back-Arc Basin, East Caribbean Sea

    Get PDF
    The Grenada Basin separates the active Lesser Antilles Arc from the Aves Ridge, described as a Cretaceous‐Paleocene remnant of the “Great Arc of the Caribbean.” Although various tectonic models have been proposed for the opening of the Grenada Basin, the data on which they rely are insufficient to reach definitive conclusions. This study presents, a large set of deep‐penetrating multichannel seismic reflection data and dredge samples acquired during the GARANTI cruise in 2017. By combining them with published data including seismic reflection data, wide‐angle seismic data, well data and dredges, we refine the understanding of the basement structure, depositional history, tectonic deformation and vertical motions of the Grenada Basin and its margins as follows: (1) rifting occurred during the late Paleocene‐early Eocene in a NW‐SE direction and led to seafloor spreading during the middle Eocene; (2) this newly formed oceanic crust now extends across the eastern Grenada Basin between the latitude of Grenada and Martinique; (3) asymmetrical pre‐Miocene depocenters support the hypothesis that the southern Grenada Basin originally extended beneath the present‐day southern Lesser Antilles Arc and probably partly into the present‐day forearc before the late Oligocene‐Miocene rise of the Lesser Antilles Arc; and (4) the Aves Ridge has subsided along with the Grenada Basin since at least the middle Eocene, with a general subsidence slowdown or even an uplift during the late Oligocene, and a sharp acceleration on its southeastern flank during the late Miocene. Until this acceleration of subsidence, several bathymetric highs remained shallow enough to develop carbonate platforms

    ISM masses and the star formation law at Z = 1 to 6: ALMA observations of dust continuum in 145 galaxies in the COSMOS survey field

    Get PDF
    ALMA Cycle 2 observations of long-wavelength dust emission in 145 star-forming galaxies are used to probe the evolution of the star-forming interstellar medium (ISM). We also develop a physical basis and empirical calibration (with 72 low-z and z ~ 2 galaxies) for using the dust continuum as a quantitative probe of ISM masses. The galaxies with the highest star formation rates (SFRs) at = 2.2 and 4.4 have gas masses up to 100 times that of the Milky Way and gas mass fractions reaching 50%–80%, i.e., gas masses 1-4× their stellar masses. We find a single high-z star formation law: SFR = 35 M^(0.89)_(mol) x (1 + z)^(0.95)_(z=2) x (sSFR)^(0.23)_(MS) M⊙yr^(−1)—an approximately linear dependence on the ISM mass and an increased star formation efficiency per unit gas mass at higher redshift. Galaxies above the main sequence (MS) have larger gas masses but are converting their ISM into stars on a timescale only slightly shorter than those on the MS; thus, these "starbursts" are largely the result of having greatly increased gas masses rather than an increased efficiency of converting gas to stars. At z > 1, the entire population of star-forming galaxies has ~2–5 times shorter gas depletion times than low-z galaxies. These shorter depletion times indicate a different mode of star formation in the early universe—most likely dynamically driven by compressive, high-dispersion gas motions—a natural consequence of the high gas accretion rates

    HSC-CLAUDS survey: The star formation rate functions since z ~ 2 and comparison with hydrodynamical simulations

    Get PDF
    Star formation rate functions (SFRFs) give an instantaneous view of the distribution of star formation rates (SFRs) in galaxies at different epochs. They are a complementary and more stringent test for models than the galaxy stellar mass function, which gives an integrated view of the past star formation activity. However, the exploration of SFRFs has been limited thus far due to difficulties in assessing the SFR from observed quantities and probing the SFRF over a wide range of SFRs. We overcome these limitations thanks to an original method that predicts the infrared luminosity from the rest-frame UV/optical color of a galaxy and then its SFR over a wide range of stellar masses and redshifts. We applied this technique to the deep imaging survey HSC-CLAUDS combined with near-infrared and UV photometry. We provide the first SFR functions with reliable measurements in the high- and low-SFR regimes up to z=2z=2 and compare our results with previous observations and four state-of-the-art hydrodynamical simulations.Comment: 29 pages, 19 figure
    • 

    corecore