43 research outputs found

    A Dust Twin of Cas A: Cool Dust and 21-micron Silicate Dust Feature in the Supernova Remnant G54.1+0.3

    Get PDF
    We present infrared (IR) and submillimeter observations of the Crab-like supernova remnant (SNR) G54.1+0.3 including 350 micron (SHARC-II), 870 micron (LABOCA), 70, 100, 160, 250, 350, 500 micron (Herschel) and 3-40 micron (Spitzer). We detect dust features at 9, 11 and 21 micron and a long wavelength continuum dust component. The 21 micron dust coincides with [Ar II] ejecta emission, and the feature is remarkably similar to that in Cas A. The IRAC 8 micron image including Ar ejecta is distributed in a shell-like morphology which is coincident with dust features, suggesting that dust has formed in the ejecta. We create a cold dust map that shows excess emission in the northwestern shell. We fit the spectral energy distribution of the SNR using the continuous distributions of ellipsoidal (CDE) grain model of pre-solar grain SiO2 that reproduces the 21 and 9 micron dust features and discuss grains of SiC and PAH that may be responsible for the 10-13 micron dust features. To reproduce the long-wavelength continuum, we explore models consisting of different grains including Mg2SiO4, MgSiO3, Al2O3, FeS, carbon, and Fe3O4. We tested a model with a temperature-dependent silicate absorption coefficient. We detect cold dust (27-44 K) in the remnant, making this the fourth such SNR with freshly-formed dust. The total dust mass in the SNR ranges from 0.08-0.9 Msun depending on the grain composition, which is comparable to predicted masses from theoretical models. Our estimated dust masses are consistent with the idea that SNe are a significant source of dust in the early Universe.Comment: MNRAS: accepted on June 28, 2018 and published on July 4, 201

    Turbulent diffusion and drift in galactic magnetic fields and the explanation of the knee in the cosmic ray spectrum

    Full text link
    We reconsider the scenario in which the knee in the cosmic ray spectrum is explained as due to a change in the escape mechanism of cosmic rays from the Galaxy from one dominated by transverse diffusion to one dominated by drifts. We solve the diffusion equations adopting realistic galactic field models and using diffusion coefficients appropriate for strong turbulence (with a Kolmogorov spectrum of fluctuations) and consistent with the assumed magnetic fields. We show that properly taking into account these effects leads to a natural explanation of the knee in the spectrum, and a transition towards a heavier composition above the knee is predicted.Comment: 17 pp., 6 figures; revised version with minor changes. To appear in JHE

    Antineutrinos from Earth: A reference model and its uncertainties

    Full text link
    We predict geoneutrino fluxes in a reference model based on a detailed description of Earth's crust and mantle and using the best available information on the abundances of uranium, thorium, and potassium inside Earth's layers. We estimate the uncertainties of fluxes corresponding to the uncertainties of the element abundances. In addition to distance integrated fluxes, we also provide the differential fluxes as a function of distance from several sites of experimental interest. Event yields at several locations are estimated and their dependence on the neutrino oscillation parameters is discussed. At Kamioka we predict N(U+Th)=35 +- 6 events for 10^{32} proton yr and 100% efficiency assuming sin^2(2theta)=0.863 and delta m^2 = 7.3 X 10^{-5} eV^2. The maximal prediction is 55 events, obtained in a model with fully radiogenic production of the terrestrial heat flow.Comment: 24 pages, ReVTeX4, plus 7 postscript figures; minor formal changes to match version to be published in PR

    Understanding hadronic gamma-ray emission from supernova remnants

    Full text link
    We aim to test the plausibility of a theoretical framework in which the gamma-ray emission detected from supernova remnants may be of hadronic origin, i.e., due to the decay of neutral pions produced in nuclear collisions involving relativistic nuclei. In particular, we investigate the effects induced by magnetic field amplification on the expected particle spectra, outlining a phenomenological scenario consistent with both the underlying Physics and the larger and larger amount of observational data provided by the present generation of gamma experiments, which seem to indicate rather steep spectra for the accelerated particles. In addition, in order to study to study how pre-supernova winds might affect the expected emission in this class of sources, the time-dependent gamma-ray luminosity of a remnant with a massive progenitor is worked out. Solid points and limitations of the proposed scenario are finally discussed in a critical way.Comment: 30 pages, 5 figures; Several comments, references and a figure added. Some typos correcte

    Soft gamma-ray constraints on a bright flare from the Galactic Center supermassive black hole

    Full text link
    Sagittarius A* (Sgr A*) is the supermassive black hole residing at the center of the Milky Way. It has been the main target of an extensive multiwavelength campaign we carried out in April 2007. Herein, we report the detection of a bright flare from the vicinity of the horizon, observed simultaneously in X-rays (XMM/EPIC) and near infrared (VLT/NACO) on April 4th for 1-2 h. For the first time, such an event also benefitted from a soft gamma-rays (INTEGRAL/ISGRI) and mid infrared (VLT/VISIR) coverage, which enabled us to derive upper limits at both ends of the flare spectral energy distribution (SED). We discuss the physical implications of the contemporaneous light curves as well as the SED, in terms of synchrotron, synchrotron self-Compton and external Compton emission processes.Comment: 30 pages, 5 figures, accepted for publication in AS

    A self-consistent determination of the temperature profile and the magnetic field geometry in winds of late-type stars

    Full text link
    Cool giant and supergiant stars generally present low velocity winds with high mass loss rates. Several models have been proposed to explain the acceleration process of these winds. Although dust is known to be present in these objects, the radiation pressure on these particles is uneffective in reproducing the observed physical parameters of the wind. The most promising acceleration mechanism cited in the literature is the transference of momentum and energy from Alfven waves to the gas. Usually, these models consider the wind to be isothermal. We present a stellar wind model in which the Alfven waves are used as the main acceleration mechanism, and determine the temperature profile by solving the energy equation taking into account both the radiative losses and the wave heating. We also determine self-consistently the magnetic field geometry as the result of the competition between the magnetic field and the thermal pressures gradient. As main result, we show that the magnetic geometry present a super-radial index in the region where the gas pressure is increasing. However, this super-radial index is greater than that observed for the solar corona.Comment: Accepted for publication in Space Science Reviews. Presented at the World Space Environment Forum 2005, Austria. 8 pages, 2 figure

    Extragalactic Sources for Ultra High Energy Cosmic Ray Nuclei

    Full text link
    In this article we examine the hypothesis that the highest energy cosmic rays are complex nuclei from extragalactic sources. Under reasonable physical assumptions, we show that the nearby metally rich starburst galaxies (M82 and NGC 253) can produce all the events observed above the ankle. This requires diffusion of particles below 102010^{20} eV in extragalactic magnetic fields B15B \approx 15 nG. Above 101910^{19} eV, the model predicts the presence of significant fluxes of medium mass and heavy nuclei with small rate of change of composition. Notwithstanding, the most salient feature of the starburst-hypothesis is a slight anisotropy induced by iron debris just before the spectrum-cutoff.Comment: To appear in Phys. Rev. D, reference adde

    Primary proton spectrum between 200 TeV and 1000 TeV observed with the Tibet burst detector and air shower array

    Full text link
    Since 1996, a hybrid experiment consisting of the emulsion chamber and burst detector array and the Tibet-II air-shower array has been operated at Yangbajing (4300 m above sea level, 606 g/cm^2) in Tibet. This experiment can detect air-shower cores, called as burst events, accompanied by air showers in excess of about 100 TeV. We observed about 4300 burst events accompanied by air showers during 690 days of operation and selected 820 proton-induced events with its primary energy above 200 TeV using a neural network method. Using this data set, we obtained the energy spectrum of primary protons in the energy range from 200 to 1000 TeV. The differential energy spectrum obtained in this energy region can be fitted by a power law with the index of -2.97 ±\pm 0.06, which is steeper than that obtained by direct measurements at lower energies. We also obtained the energy spectrum of helium nuclei at particle energies around 1000 TeV.Comment: 25 pages, 22 figures, Accepted for publication in Phys. Rev.

    Topical Issues for Particle Acceleration Mechanisms in Astrophysical Shocks

    Get PDF
    Particle acceleration at plasma shocks appears to be ubiquitous in the universe, spanning systems in the heliosphere, supernova remnants, and relativistic jets in distant active galaxies and gamma-ray bursts. This review addresses some of the key issues for shock acceleration theory that require resolution in order to propel our understanding of particle energization in astrophysical environments. These include magnetic field amplification in shock ramps, the non-linear hydrodynamic interplay between thermal ions and their extremely energetic counterparts possessing ultrarelativistic energies, and the ability to inject and accelerate electrons in both non-relativistic and relativistic shocks. Recent observational developments that impact these issues are summarized. While these topics are currently being probed by astrophysicists using numerical simulations, they are also ripe for investigation in laboratory experiments, which potentially can provide valuable insights into the physics of cosmic shocks.Comment: 13 pages, no figures. Invited review, accepted for publication in Astrophysics and Space Science, as part of the HEDLA 2006 conference proceeding
    corecore