32 research outputs found

    Sistema de control embebido conectable a PC : diseño y aplicaciones prácticas

    Full text link
    Ladarescu Palivan, I. (2010). Sistema de control embebido conectable a PC : diseño y aplicaciones prácticas. http://hdl.handle.net/10251/9118.Archivo delegad

    Un estudio de estereotipos de género en alumnado de secundaria en el marco de Proyecto Meitner

    Get PDF
    [ES] Este artículo presenta Proyecto Meitner como una acción de divulgación científica diseñada para abordar, entre otras cuestiones, la problemática de las mujeres en Física a través de las artes escénicas. Se presenta, también, un estudio de sesgos y estereotipos de género en ciencia realizado al alumnado de los centros de secundaria de la Comunitat Valenciana que participaron en dos sesiones matinales de la obra de teatro Proyecto Meitner. Se utilizó un cuestionario que rellenaron 134 estudiantes estudiantes antes de las funciones. Las respuestas revelan una perpetuación de los estereotipos asociados al personal científico, definido principalmente como muy inteligente, culto, occidental, hombre, mayor, solitario y con bata. Además, el alumnado encuestado cree que los chicos tienen mejores aptitudes que las chicas para las carreras universitarias aun cuando las capacidades en ambos casos son las mismas

    First Results of the 140^{140}Ce(n,γ)141^{141}Ce Cross-Section Measurement at n_TOF

    Get PDF
    An accurate measurement of the 140^{140}Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140^{140}Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140^{140}Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140^{140}Ce Maxwellian-averaged cross-section

    First Results of the 140^{140}Ce(n,γ)141^{141}Ce Cross-Section Measurement at n_TOF

    Get PDF
    An accurate measurement of the 140^{140}Ce(n,γ) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140^{140}Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140^{140}Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140^{140}Ce Maxwellian-averaged cross-section

    Simultaneous Gamma-Neutron Vision device: a portable and versatile tool for nuclear inspections

    No full text
    Abstract This work presents GN-Vision, a novel dual γ-ray and neutron imaging system, which aims at simultaneously obtaining information about the spatial origin of γ-ray and neutron sources. The proposed device is based on two position sensitive detection planes and exploits the Compton imaging technique for the imaging of γ-rays. In addition, spatial distributions of slow- and thermal-neutron sources (<100 eV) are reconstructed by using a passive neutron pin-hole collimator attached to the first detection plane. The proposed gamma-neutron imaging device could be of prime interest for nuclear safety and security applications. The two main advantages of this imaging system are its high efficiency and portability, making it well suited for nuclear applications were compactness and real-time imaging is important. This work presents the working principle and conceptual design of the GN-Vision system and explores, on the basis of Monte Carlo simulations, its simultaneous γ-ray and neutron detection and imaging capabilities for a realistic scenario where a 252Cf source is hidden in a neutron moderating container

    Hybrid in-beam PET- and Compton prompt-gamma imaging aimed at enhanced proton-range verification

    Full text link
    We report on an hybrid in-beam PET and prompt-gamma Compton imaging system aimed at quasi real-time ion-range verification in proton-therapy treatments. Proof-of-concept experiments were carried out at the radiobiology beam line of the CNA cyclotron facility using a set of two synchronous Compton imagers and different target materials. The time structure of the 18~MeV proton beam was shaped with a series of beam-on and beam-off intervals, thereby mimicking a pulsed proton beam on a long time scale. During beam-on intervals, Compton imaging was performed utilizing the high energy γ\gamma-rays promptly emitted from the nuclear reactions occurring in the targets. In the course of the beam-off intervals in-situ positron-emission tomography was accomplished with the same imagers using the β+\beta^{+} decay of activated nuclei. The targets used were stacks of different materials covering also various proton ranges and energies. A systematic study on the performance of these two complementary imaging techniques is reported and the experimental results interpreted on the basis of Monte Carlo calculations. The results demonstrate the possibility to combine both imaging techniques in a concomitant way, where high-efficiency prompt-gamma imaging is complemented with the high spatial accuracy of PET. Empowered by these results we suggest that a pulsed beam with a suitable duty cycle, in conjunction with in-situ Compton- and PET-imaging may help to attain complementary information and quasi real-time range monitoring with high accuracy

    First in-beam tests on simultaneous PET and Compton imaging aimed at quasi-real-time range verification in hadron therapy

    No full text
    Hadron therapy with protons has advantages with respect to conventional radiotherapy because of the maximization of the dose at the Bragg peak. As a drawback, and because of different systematic uncertainty sources, a quasi-real time monitoring for the proton range verification is required to reduce safety margins. In this respect, two gamma-ray imaging techniques are pursued: prompt gamma-ray monitoring and positron-annihilation tomography (PET). The promising prompt gamma-ray monitoring requires detection systems with large detection efficiency, high time resolution, compactness, fast response, low sensitivity to neutron-induced backgrounds and powerful image reconstruction capabilities. On the other hand, in-beam PET surveys require additionally good γ-ray position reconstruction resolution. In this contribution we show that, to a large extent, both approaches can be simultaneously accomplished by using an array of Compton cameras conveniently arranged around the target volume. Here we demonstrate experimentally the suitability of such an array, named i-TED, for PG monitoring in ion-range monitoring during Hadron Therapy, in-beam PET survey and β+ production yield measurements capability. Furthermore, with the use of GPUs, a quasi-real time PG monitoring and in-beam PET can be achieved

    First Results of the 140Ce(n,g)141Ce Cross-Section Measurement at n_TOF

    Get PDF
    The cerium oxide material for this measurement was provided by T. Katabuchi of the Tokyo Institute of Technology.An accurate measurement of the 140Ce(n,g) energy-dependent cross-section was performed at the n_TOF facility at CERN. This cross-section is of great importance because it represents a bottleneck for the s-process nucleosynthesis and determines to a large extent the cerium abundance in stars. The measurement was motivated by the significant difference between the cerium abundance measured in globular clusters and the value predicted by theoretical stellar models. This discrepancy can be ascribed to an overestimation of the 140Ce capture cross-section due to a lack of accurate nuclear data. For this measurement, we used a sample of cerium oxide enriched in 140Ce to 99.4%. The experimental apparatus consisted of four deuterated benzene liquid scintillator detectors, which allowed us to overcome the difficulties present in the previous measurements, thanks to their very low neutron sensitivity. The accurate analysis of the p-wave resonances and the calculation of their average parameters are fundamental to improve the evaluation of the 140Ce Maxwellian-averaged cross-section
    corecore